Young Clint E, Yang Charles R
Neuroscience Discovery, Eli Lilly & Company, Lilly Corporate Center, Indianapolis, Indiana 46285-0510, USA.
J Neurosci. 2004 Jan 7;24(1):8-23. doi: 10.1523/JNEUROSCI.1650-03.2004.
To determine the nature of dopamine modulation of dendritic Ca2+ signaling in layers V-VI prefrontal cortex (PFC) neurons, whole-cell Ca2+ potentials were evoked after blockade of Na+ and K+ channels. Soma-dendritic Ca2+ spikes evoked by suprathreshold depolarizing pulses, which could be terminated by superimposed brief intrasomatic hyperpolarizing pulses, are blocked by the L-type Ca2+ channel antagonist nimodipine (1 microM). The D1/D5 receptor agonist dihydrexidine (DHX) (0.01-10 microM; 5 min) or R-(+)SKF81291 (10 microM) induced a prolonged (>30 min) dose-dependent peak suppression of these Ca2+ spikes. This effect was dependent on [Ca2+]i- and protein kinase C (PKC)-dependent mechanisms because [Ca2+]i chelation by BAPTA or inhibition of PKC by bisindolymaleimide (BiM1), but not inhibition of [Ca2+]i release with heparin or Xestospongin C, prevented the D1-mediated suppression of Ca2+ spikes. Depolarizing pulses subthreshold to activating a Ca2+ spike evoked a nimodipine-sensitive Ca2+ "hump" potential. D1/D5 stimulation induced an N-[2-((o-bromocinamyl)amino)ethyl]-5-isoquinolinesulfonamide (H-89)- or internal PKA inhibitory peptide[5-24]-sensitive (PKA-dependent) transient (approximately 7 min) potentiation of the hump potential to full Ca2+ spike firing. Furthermore, application of DHX in the presence of the PKC inhibitor BiM1 or internal PKC inhibitory peptide[19-36] resulted in persistent firing of full Ca2+ spike bursts, suggesting that a D1/D5-PKA mechanism switches subthreshold Ca2+ hump potential to fire full Ca2+ spikes, which are eventually turned off by a D1/D5-Ca2+-dependent PKC mechanism. This depolarizing state-dependent, D1/D5-activated, bi-directional switching of soma-dendritic L-type Ca2+ channels via PKA-dependent potentiation and PKC-dependent suppression may provide spatiotemporal regulation of synaptic integration and plasticity in PFC.
为了确定多巴胺对前额叶皮层(PFC)V-VI层神经元树突状Ca2+信号的调节性质,在阻断Na+和K+通道后诱发全细胞Ca2+电位。阈上去极化脉冲诱发的体-树突状Ca2+尖峰可被叠加的短暂胞内超极化脉冲终止,该尖峰被L型Ca2+通道拮抗剂尼莫地平(1 microM)阻断。D1/D5受体激动剂二氢麦角隐亭(DHX)(0.01-10 microM;5分钟)或R-(+)SKF81291(10 microM)诱导这些Ca2+尖峰的持续时间延长(>30分钟)且剂量依赖性的峰值抑制。这种效应依赖于[Ca2+]i和蛋白激酶C(PKC)依赖性机制,因为BAPTA螯合[Ca2+]i或双吲哚马来酰亚胺(BiM1)抑制PKC可阻止D1介导的Ca2+尖峰抑制,但肝素或西司他汀C抑制[Ca2+]i释放则不能。低于激活Ca2+尖峰阈值的去极化脉冲诱发一个尼莫地平敏感的Ca2+“驼峰”电位。D1/D5刺激诱导N-[2-((邻溴肉桂基)氨基)乙基]-5-异喹啉磺酰胺(H-89)或内部PKA抑制肽[5-24]敏感的(PKA依赖性)短暂(约7分钟)增强驼峰电位至全Ca2+尖峰发放。此外,在PKC抑制剂BiM1或内部PKC抑制肽[19-36]存在的情况下应用DHX导致全Ca2+尖峰爆发的持续发放,表明D1/D5-PKA机制将阈下Ca2+驼峰电位转换为发放全Ca2+尖峰,最终被D1/D5-Ca2+依赖性PKC机制关闭。这种去极化状态依赖性、D1/D5激活的、通过PKA依赖性增强和PKC依赖性抑制对体-树突状L型Ca2+通道进行双向切换的机制可能为PFC中的突触整合和可塑性提供时空调节。