Suppr超能文献

用于脊柱MRI分割的三维归一化割。

Normalized cuts in 3-D for spinal MRI segmentation.

作者信息

Carballido-Gamio Julio, Belongie Serge J, Majumdar Sharmila

机构信息

Joint Graduate Group in Bioengineering, University of California, San Francisco, 94143-1290, USA.

出版信息

IEEE Trans Med Imaging. 2004 Jan;23(1):36-44. doi: 10.1109/TMI.2003.819929.

Abstract

Segmentation of medical images has become an indispensable process to perform quantitative analysis of images of human organs and their functions. Normalized Cuts (NCut) is a spectral graph theoretic method that readily admits combinations of different features for image segmentation. The computational demand imposed by NCut has been successfully alleviated with the Nyström approximation method for applications different than medical imaging. In this paper we discuss the application of NCut with the Nyström approximation method to segment vertebral bodies from sagittal T1-weighted magnetic resonance images of the spine. The magnetic resonance images were preprocessed by the anisotropic diffusion algorithm, and three-dimensional local histograms of brightness was chosen as the segmentation feature. Results of the segmentation as well as limitations and challenges in this area are presented.

摘要

医学图像分割已成为对人体器官及其功能图像进行定量分析不可或缺的过程。归一化割(NCut)是一种光谱图论方法,很容易接受不同特征的组合用于图像分割。对于不同于医学成像的应用,通过奈斯特罗姆近似方法已成功缓解了NCut所带来的计算需求。在本文中,我们讨论了将NCut与奈斯特罗姆近似方法应用于从脊柱矢状面T1加权磁共振图像中分割椎体。磁共振图像通过各向异性扩散算法进行预处理,并选择亮度的三维局部直方图作为分割特征。本文给出了分割结果以及该领域的局限性和挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验