Suppr超能文献

一种使用深度连体神经网络进行脊柱转移瘤检测的多分辨率方法。

A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks.

作者信息

Wang Juan, Fang Zhiyuan, Lang Ning, Yuan Huishu, Su Min-Ying, Baldi Pierre

机构信息

Institute for Genomics and Bioinformatics and Department of Computer Science, University of California, Irvine, CA 92697, USA.

Department of Computer Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

出版信息

Comput Biol Med. 2017 May 1;84:137-146. doi: 10.1016/j.compbiomed.2017.03.024. Epub 2017 Mar 27.

Abstract

Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images.

摘要

脊柱转移瘤是一种脊柱转移性癌症,是脊柱最常见的恶性疾病。在本研究中,我们研究了使用深度学习方法在磁共振成像(MRI)中自动检测脊柱转移瘤的可行性。为了适应转移瘤大小的巨大差异,我们开发了一种连体深度神经网络方法,该方法由三个相同的子网组成,用于多分辨率分析和检测脊柱转移瘤。在每个感兴趣的位置,提取三个不同分辨率的图像块并用作网络的输入。为了进一步减少假阳性(FP),我们利用相邻MRI切片之间的相似性,并采用加权平均策略来汇总连体神经网络获得的结果。使用自由响应接收器操作特性(FROC)分析在一组26例病例上评估检测性能。结果表明,所提出的方法正确检测出所有脊柱转移瘤,同时每例仅产生0.40个假阳性。在真阳性(TP)率为90%时,使用汇总策略可将每例假阳性从0.375个减少到0.207个,减少了近44.8%。结果表明,所提出的连体神经网络方法与汇总策略相结合,为MRI图像中脊柱转移瘤的自动检测提供了一种可行的策略。

相似文献

9
Spine detection in CT and MR using iterated marginal space learning.基于迭代边缘空间学习的 CT 和 MR 脊柱检测。
Med Image Anal. 2013 Dec;17(8):1283-92. doi: 10.1016/j.media.2012.09.007. Epub 2012 Dec 1.

引用本文的文献

7
Advances in imaging modalities for spinal tumors.脊柱肿瘤成像方式的进展。
Neurooncol Adv. 2024 Apr 9;6(Suppl 3):iii13-iii27. doi: 10.1093/noajnl/vdae045. eCollection 2024 Oct.

本文引用的文献

1
Detecting Cardiovascular Disease from Mammograms With Deep Learning.利用深度学习从乳房X光片中检测心血管疾病。
IEEE Trans Med Imaging. 2017 May;36(5):1172-1181. doi: 10.1109/TMI.2017.2655486. Epub 2017 Jan 19.
3
Imaging of bone metastasis: An update.骨转移的影像学:最新进展。
World J Radiol. 2015 Aug 28;7(8):202-11. doi: 10.4329/wjr.v7.i8.202.
6
Deep learning in neural networks: an overview.神经网络中的深度学习:综述。
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.
8
The Dropout Learning Algorithm.辍学学习算法
Artif Intell. 2014 May;210:78-122. doi: 10.1016/j.artint.2014.02.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验