Karyakin Arkady A, Puganova Elena A, Budashov Igor A, Kurochkin Ilya N, Karyakina Elena E, Levchenko Vladimir A, Matveyenko Vladimir N, Varfolomeyev Sergey D
Faculty of Chemistry, M V Lomonosov Moscow State University, 119992, Moscow, Russia.
Anal Chem. 2004 Jan 15;76(2):474-8. doi: 10.1021/ac034859l.
We propose to form nanoelectrode arrays by deposition of the electrocatalyst through lyotropic liquid crystalline templates onto inert electrode support. Whereas Prussian Blue is known to be a superior electrocatalyst in hydrogen peroxide reduction, carbon materials used as electrode support demonstrate only a minor activity. We report on the possibility for nanostructuring of Prussian Blue by its electrochemical deposition through lyotropic liquid crystalline templates, which is noticed from atomic force microscopy images of the resulting surfaces. The resulting Prussian Blue based nanoelectrode arrays in flow injection analysis mode demonstrate a sub-part-per-billion detection limit (1 x 10(-)(8) M) and a linear calibration range starting exactly from the detection limit and extending over 6 orders of magnitude of H(2)O(2) concentrations (1 x 10(-)(8) to 1 x 10(-)(2) M), which are the most advantageous analytical performances in hydrogen peroxide electroanalysis.
我们建议通过将电催化剂通过溶致液晶模板沉积到惰性电极载体上来形成纳米电极阵列。虽然普鲁士蓝已知是过氧化氢还原反应中的一种优良电催化剂,但用作电极载体的碳材料仅表现出较小的活性。我们报道了通过溶致液晶模板对普鲁士蓝进行电化学沉积实现纳米结构化的可能性,这从所得表面的原子力显微镜图像中可以看出。所得基于普鲁士蓝的纳米电极阵列在流动注射分析模式下表现出十亿分之一以下的检测限(1×10⁻⁸ M)以及从检测限开始且涵盖6个数量级的过氧化氢浓度范围(1×10⁻⁸至1×10⁻² M)的线性校准范围,这是过氧化氢电分析中最有利的分析性能。