Zharova Tatyana V, Vinogradov Andrei D
Department of Biochemistry, School of Biology, Moscow State University, Moscow 119992, Russian Federation.
J Biol Chem. 2004 Mar 26;279(13):12319-24. doi: 10.1074/jbc.M311397200. Epub 2004 Jan 13.
F(0).F(1)-ATP synthase in tightly coupled inside-out vesicles derived from Paracoccus denitrificans catalyzes rapid respiration-supported ATP synthesis, whereas their ATPase activity is very low. In the present study, the conditions required to reveal the Deltamu(H+)-generating ATP hydrolase activity of the bacterial enzyme have been elucidated. Energization of the membranes by respiration results in strong activation of the venturicidin-sensitive ATP hydrolysis, which is coupled with generation of Deltamũ(H+). Partial uncoupling stimulates the proton-translocating ATP hydrolysis, whereas complete uncoupling results in inhibition of the ATPase activity. The presence of inorganic phosphate is indispensable for the steady-state turnover of the Deltamũ(H+)-activated ATPase. The collapse of Deltamũ(H+) brings about rapid deactivation of the enzyme, which has been subjected to pre-energization. The rate and extent of the deactivation depend on protein concentration, i.e. the more vesicles are present in the assay mixture, the higher the rate and extent of the deactivation is seen. Sulfite and the ADP-trapping system protect ATPase against the Deltamũ(H+) collapse-induced deactivation, whereas phosphate delays the rate of deactivation. A low concentration of ADP (<1 microm) increases the rate of deactivation. Taken together, the results suggest that latent proton-translocating ATPase in P. denitrificans is kinetically equivalent to the previously characterized ADP(Mg2+)-inhibited, azide-trapped bovine heart mitochondrial F(0).F(1)-ATPase (Galkin, M. A., and Vinogradov, A. D. (1999) FEBS Lett. 448, 123-126). A Deltamũ(H+)-sensitive mechanism operates in P. denitrificans that prevents physiologically wasteful consumption of ATP by F(0).F(1)-ATPase (synthase) complex when the latter is unable to maintain certain value of Deltamũ(H+).
来自反硝化副球菌的紧密偶联的内翻外囊泡中的F(0).F(1)-ATP合酶催化快速的呼吸支持的ATP合成,而它们的ATP酶活性非常低。在本研究中,已经阐明了揭示该细菌酶产生Δμ(H⁺)的ATP水解酶活性所需的条件。呼吸作用使膜去极化导致对venturicidin敏感的ATP水解强烈激活,这与Δμ(H⁺)的产生偶联。部分解偶联刺激质子转运的ATP水解,而完全解偶联导致ATP酶活性受到抑制。无机磷酸盐的存在对于Δμ(H⁺)激活的ATP酶的稳态周转是必不可少的。Δμ(H⁺)的崩溃导致该酶迅速失活,该酶已预先被去极化。失活的速率和程度取决于蛋白质浓度,即测定混合物中存在的囊泡越多,观察到的失活速率和程度就越高。亚硫酸盐和ADP捕获系统保护ATP酶免受Δμ(H⁺)崩溃诱导的失活,而磷酸盐延迟失活速率。低浓度的ADP(<1微摩尔)增加失活速率。综上所述,结果表明反硝化副球菌中潜在的质子转运ATP酶在动力学上等同于先前表征的ADP(Mg²⁺)抑制的、叠氮化物捕获的牛心线粒体F(0).F(1)-ATP酶(Galkin,M.A.,和Vinogradov,A.D.(1999年)FEBS Lett. 448,123 - 126)。反硝化副球菌中存在一种对Δμ(H⁺)敏感的机制,当F(0).F(1)-ATP酶(合酶)复合物无法维持Δμ(H⁺)的特定值时,可防止ATP在生理上的浪费性消耗。