Körding Konrad P, Wolpert Daniel M
Sobell Department of Motor Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
Nature. 2004 Jan 15;427(6971):244-7. doi: 10.1038/nature02169.
When we learn a new motor skill, such as playing an approaching tennis ball, both our sensors and the task possess variability. Our sensors provide imperfect information about the ball's velocity, so we can only estimate it. Combining information from multiple modalities can reduce the error in this estimate. On a longer time scale, not all velocities are a priori equally probable, and over the course of a match there will be a probability distribution of velocities. According to bayesian theory, an optimal estimate results from combining information about the distribution of velocities-the prior-with evidence from sensory feedback. As uncertainty increases, when playing in fog or at dusk, the system should increasingly rely on prior knowledge. To use a bayesian strategy, the brain would need to represent the prior distribution and the level of uncertainty in the sensory feedback. Here we control the statistical variations of a new sensorimotor task and manipulate the uncertainty of the sensory feedback. We show that subjects internally represent both the statistical distribution of the task and their sensory uncertainty, combining them in a manner consistent with a performance-optimizing bayesian process. The central nervous system therefore employs probabilistic models during sensorimotor learning.
当我们学习一项新的运动技能时,比如击打迎面而来的网球,我们的传感器和任务本身都具有变异性。我们的传感器提供的关于球速的信息并不完美,所以我们只能进行估计。整合来自多种模态的信息可以减少这种估计中的误差。从更长的时间尺度来看,并非所有速度在一开始都具有同等的可能性,并且在一场比赛过程中会存在一个速度的概率分布。根据贝叶斯理论,最优估计是通过将关于速度分布的信息——先验信息——与来自感官反馈的证据相结合而得出的。随着不确定性增加,比如在雾中或黄昏时打球,系统应该越来越依赖先验知识。要使用贝叶斯策略,大脑需要表征先验分布以及感官反馈中的不确定性水平。在这里,我们控制一项新的感觉运动任务的统计变化,并操纵感官反馈的不确定性。我们表明,受试者在内部表征了任务的统计分布及其感官不确定性,并以与性能优化的贝叶斯过程相一致的方式将它们结合起来。因此,中枢神经系统在感觉运动学习过程中采用概率模型。