Suppr超能文献

预测性学习规则生成类似皮质的概率性感官体验重演。

Predictive learning rules generate a cortical-like replay of probabilistic sensory experiences.

作者信息

Asabuki Toshitake, Fukai Tomoki

机构信息

Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.

RIKEN Center for Brain Science, RIKEN ECL Research Unit, Wako, Japan.

出版信息

Elife. 2025 Jun 16;13:RP92712. doi: 10.7554/eLife.92712.

Abstract

The brain is thought to construct an optimal internal model representing the probabilistic structure of the environment accurately. Evidence suggests that spontaneous brain activity gives such a model by cycling through activity patterns evoked by previous sensory experiences with the experienced probabilities. The brain's spontaneous activity emerges from internally driven neural population dynamics. However, how cortical neural networks encode internal models into spontaneous activity is poorly understood. Recent computational and experimental studies suggest that a cortical neuron can implement complex computations, including predictive responses, through soma-dendrite interactions. Here, we show that a recurrent network of spiking neurons subject to the same predictive learning principle provides a novel mechanism to learn the spontaneous replay of probabilistic sensory experiences. In this network, the learning rules minimize probability mismatches between stimulus-evoked and internally driven activities in all excitatory and inhibitory neurons. This learning paradigm generates stimulus-specific cell assemblies that internally remember their activation probabilities using within-assembly recurrent connections. Our model contrasts previous models that encode the statistical structure of sensory experiences into Markovian transition patterns among cell assemblies. We demonstrate that the spontaneous activity of our model well replicates the behavioral biases of monkeys performing perceptual decision making. Our results suggest that interactions between intracellular processes and recurrent network dynamics are more crucial for learning cognitive behaviors than previously thought.

摘要

大脑被认为会构建一个能准确表征环境概率结构的最优内部模型。有证据表明,自发脑活动通过以前感官体验诱发的活动模式以经历过的概率循环来给出这样一个模型。大脑的自发活动源自内部驱动的神经群体动力学。然而,皮质神经网络如何将内部模型编码到自发活动中却知之甚少。最近的计算和实验研究表明,一个皮质神经元可以通过胞体 - 树突相互作用执行复杂计算,包括预测反应。在这里,我们表明,遵循相同预测学习原则的脉冲神经元递归网络提供了一种学习概率性感官体验自发重放的新机制。在这个网络中,学习规则使所有兴奋性和抑制性神经元中刺激诱发活动与内部驱动活动之间的概率不匹配最小化。这种学习范式产生特定于刺激的细胞集合,这些细胞集合利用集合内的递归连接在内部记住它们的激活概率。我们的模型与之前将感官体验的统计结构编码到细胞集合之间的马尔可夫转换模式的模型形成对比。我们证明,我们模型的自发活动很好地复制了执行感知决策的猴子的行为偏差。我们的结果表明,细胞内过程与递归网络动力学之间的相互作用对于学习认知行为比之前认为的更为关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dd/12169850/94aad1db1ebc/elife-92712-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验