Kim Dae-Shik, Kim Mina, Ronen Itamar, Formisano Elia, Kim Keun-Ho, Ugurbil Kamil, Mori Susumu, Goebel Rainer
Center for Magnetic Resonance Research, Radiology, University of Minnesota Medical School, Minneapolis, MN, USA.
Magn Reson Imaging. 2003 Dec;21(10):1131-40. doi: 10.1016/j.mri.2003.08.014.
Noninvasive cognitive neuroimaging studies based on functional magnetic resonance imaging (fMRI) are of ever-increasing importance for basic and clinical neurosciences. The explanatory power of fMRI could be greatly expanded, however, if the pattern of the neuronal circuitry underlying functional activation could be made visible in an equally noninvasive manner. In this study, blood oxygenation level-dependent (BOLD)-based fMRI and diffusion tensor imaging (DTI) were performed in the same cat visual cortex, and the foci of fMRI activation utilized as seeding points for 3D DTI fiber reconstruction algorithms, thus providing the map of the axonal circuitry underlying visual information processing. The methods developed in this study will lay the foundation for in vivo neuroanatomy and the ability for noninvasive longitudinal studies of brain development.
基于功能磁共振成像(fMRI)的非侵入性认知神经影像学研究对基础神经科学和临床神经科学而言愈发重要。然而,如果能够以同样非侵入性的方式使功能激活背后的神经元回路模式变得可见,那么fMRI的解释力将会得到极大扩展。在本研究中,在同一只猫的视觉皮层中进行了基于血氧水平依赖(BOLD)的fMRI和扩散张量成像(DTI),并将fMRI激活灶用作三维DTI纤维重建算法的种子点,从而提供了视觉信息处理背后的轴突回路图谱。本研究中开发的方法将为体内神经解剖学以及大脑发育的非侵入性纵向研究能力奠定基础。