Suppr超能文献

细菌二硫键异构酶DsbC的连接α-螺旋在避免被DsbB错误氧化中的保守作用。

Conserved role of the linker alpha-helix of the bacterial disulfide isomerase DsbC in the avoidance of misoxidation by DsbB.

作者信息

Segatori Laura, Murphy Lori, Arredondo Silvia, Kadokura Hiroshi, Gilbert Hiram, Beckwith Jon, Georgiou George

机构信息

Department of Chemical Engineering, Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712-1095, USA.

出版信息

J Biol Chem. 2006 Feb 24;281(8):4911-9. doi: 10.1074/jbc.M505453200. Epub 2005 Nov 9.

Abstract

In the bacterial periplasm the co-existence of a catalyst of disulfide bond formation (DsbA) that is maintained in an oxidized state and of a reduced enzyme that catalyzes the rearrangement of mispaired cysteine residues (DsbC) is important for the folding of proteins containing multiple disulfide bonds. The kinetic partitioning of the DsbA/DsbB and DsbC/DsbD pathways partly depends on the ability of DsbB to oxidize DsbA at rates >1000 times greater than DsbC. We show that the resistance of DsbC to oxidation by DsbB is abolished by deletions of one or more amino acids within the alpha-helix that connects the N-terminal dimerization domain with the C-terminal thioredoxin domain. As a result, mutant DsbC carrying alpha-helix deletions could catalyze disulfide bond formation and complemented the phenotypes of dsbA cells. Examination of DsbC homologues from Haemophilus influenzae, Pseudomonas aeruginosa, Erwinia chrysanthemi, Yersinia pseudotuberculosis, Vibrio cholerae (30-70% sequence identity with the Escherichia coli enzyme) revealed that the mechanism responsible for avoiding oxidation by DsbB is a general property of DsbC family enzymes. In addition we found that deletions in the linker region reduced, but did not abolish, the ability of DsbC to assist the formation of active vtPA and phytase in vivo, in a DsbD-dependent manner, revealing that interactions between DsbD and DsbC are also conserved.

摘要

在细菌周质中,维持氧化态的二硫键形成催化剂(DsbA)与催化错配半胱氨酸残基重排的还原酶(DsbC)共存,对于含有多个二硫键的蛋白质折叠很重要。DsbA/DsbB和DsbC/DsbD途径的动力学分配部分取决于DsbB以比DsbC快1000倍以上的速率氧化DsbA的能力。我们发现,连接N端二聚化结构域和C端硫氧还蛋白结构域的α-螺旋内一个或多个氨基酸的缺失消除了DsbC对DsbB氧化的抗性。结果,携带α-螺旋缺失的突变型DsbC可以催化二硫键形成并补充dsbA细胞的表型。对来自流感嗜血杆菌、铜绿假单胞菌、菊欧文氏菌、假结核耶尔森氏菌、霍乱弧菌(与大肠杆菌酶的序列同一性为30-70%)的DsbC同源物的研究表明,避免被DsbB氧化的机制是DsbC家族酶的普遍特性。此外,我们发现连接区的缺失以DsbD依赖的方式降低但没有消除DsbC在体内协助活性vtPA和植酸酶形成的能力,这表明DsbD和DsbC之间的相互作用也是保守的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验