Aphinyanaphongs Y, Aliferis C F
Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA.
AMIA Annu Symp Proc. 2003;2003:31-5.
The discipline of Evidence Based Medicine (EBM) studies formal and quasi-formal methods for identifying high quality medical information and abstracting it in useful forms so that patients receive the best customized care possible [1]. Current computer-based methods for finding high quality information in PubMed and similar bibliographic resources utilize search tools that employ preconstructed Boolean queries. These clinical queries are derived from a combined application of (a) user interviews, (b) ad-hoc manual document quality review, and (c) search over a constrained space of disjunctive Boolean queries. The present research explores the use of powerful text categorization (machine learning) methods to identify content-specific and high-quality PubMed articles. Our results show that models built with the proposed approach outperform the Boolean based PubMed clinical query filters in discriminatory power.
循证医学(EBM)学科研究用于识别高质量医学信息并将其提炼为有用形式的正式和准正式方法,以便患者获得尽可能最佳的定制化护理[1]。当前在PubMed及类似文献资源中查找高质量信息的基于计算机的方法使用采用预构建布尔查询的搜索工具。这些临床查询源自以下三者的综合应用:(a)用户访谈,(b)临时手动文档质量审查,以及(c)在析取布尔查询的受限空间内进行搜索。本研究探索使用强大的文本分类(机器学习)方法来识别特定内容且高质量的PubMed文章。我们的结果表明,用所提出方法构建的模型在辨别力方面优于基于布尔值的PubMed临床查询过滤器。