Mullett Charles J, Thomas John G
Departments of Pediatrics, West Virginia University, Morgantown, WV, USA.
AMIA Annu Symp Proc. 2003;2003:480-3.
To better serve an antibiotic guidance program, we hypothesized that the relatively few antibiotic susceptibility measurements conducted in the microbiology laboratory could be extended to predict antibiotic susceptibilities for all antibiotics on the hospital formulary using expert infectious disease logic. With the assistance of infectious disease specialists, we developed these logic rules and then applied them to 26,196 unique patient culture specimens and the accompanying 334,131 antibiotic susceptibility measurements generating 804,809 additional predicted bug-drug susceptibility data points. From the resulting data set, the antibiotic susceptibility profile for one pathogen, Streptococcus pneumoniae, is highlighted herein. We then incorporated the extended susceptibility profiles into a computerized antibiotic guidance program that matches current patients of interest with the positive cultures from past similar patients and calculates predicted effective antibiotic therapy. We conclude that this method successfully derives antibiotic predictions and merits further testing to evaluate its potential use in the hospital environment.
为了更好地服务于抗生素指导计划,我们推测微生物实验室中进行的相对较少的抗生素敏感性测量可以扩展,以利用传染病专家的逻辑预测医院处方中所有抗生素的敏感性。在传染病专家的协助下,我们制定了这些逻辑规则,然后将其应用于26,196份独特的患者培养标本以及随之而来的334,131次抗生素敏感性测量,生成了另外804,809个预测的病菌-药物敏感性数据点。在此,我们突出显示了一种病原体肺炎链球菌的抗生素敏感性概况。然后,我们将扩展后的敏感性概况纳入一个计算机化的抗生素指导计划,该计划将当前感兴趣的患者与过去类似患者的阳性培养结果进行匹配,并计算预测的有效抗生素治疗方案。我们得出结论,这种方法成功地得出了抗生素预测结果,值得进一步测试,以评估其在医院环境中的潜在用途。