Suppr超能文献

使用SNOMED CT简化了临床数据仓库的查询。

The use of SNOMED CT simplifies querying of a clinical data warehouse.

作者信息

Lieberman Michael I, Ricciardi Thomas N, Masarie F E, Spackman Kent A

机构信息

Oregon Health & Sciences University, Portland, OR, USA.

出版信息

AMIA Annu Symp Proc. 2003;2003:910.

Abstract

The usefulness of digital clinical information is limited by difficulty in accessing that information. Information in electronic medical records (EMR) must be entered and stored at the appropriate level of granularity for individual patient care. However, benefits such as outcomes research and decision support require aggregation to clinical data -- "heart disease" as opposed to "S/P MI 1997" for example. The hierarchical relationships in an external reference terminology, such as SNOMED, can facilitate aggregation. This study examines whether by leveraging the knowledge built into SNOMED's hierarchical structure, one can simplify the query process without degrading the query results.

摘要

数字临床信息的实用性受到获取信息难度的限制。电子病历(EMR)中的信息必须以适合个体患者护理的适当粒度级别进行输入和存储。然而,诸如结果研究和决策支持等益处需要将数据汇总到临床数据——例如,“心脏病”而非“1997年心肌梗死后状态”。外部参考术语(如SNOMED)中的层次关系有助于汇总。本研究探讨了通过利用SNOMED层次结构中构建的知识,是否可以在不降低查询结果的情况下简化查询过程。

相似文献

10
Inter-patient distance metrics using SNOMED CT defining relationships.使用SNOMED CT定义关系的患者间距离度量。
J Biomed Inform. 2006 Dec;39(6):697-705. doi: 10.1016/j.jbi.2006.01.004. Epub 2006 Feb 24.

引用本文的文献

4
Methods and applications for visualization of SNOMED CT concept sets.SNOMED CT概念集可视化的方法与应用。
Appl Clin Inform. 2014 Feb 19;5(1):127-52. doi: 10.4338/ACI-2013-09-RA-0071. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验