Suppr超能文献

本体论特征的关联模式在肝癌电子病历中的应用

Association Patterns of Ontological Features Signify Electronic Health Records in Liver Cancer.

机构信息

Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong.

Philips Research China, Shanghai, China.

出版信息

J Healthc Eng. 2017;2017:6493016. doi: 10.1155/2017/6493016. Epub 2017 Aug 6.

Abstract

Electronic Health Record (EHR) system enables clinical decision support. In this study, a set of 112 abdominal computed tomography imaging examination reports, consisting of 59 cases of hepatocellular carcinoma (HCC) or liver metastases (so-called HCC group for simplicity) and 53 cases with no abnormality detected (NAD group), were collected from four hospitals in Hong Kong. We extracted terms related to liver cancer from the reports and mapped them to ontological features using Systematized Nomenclature of Medicine (SNOMED) Clinical Terms (CT). The primary predictor panel was formed by these ontological features. Association levels between every two features in the HCC and NAD groups were quantified using Pearson's correlation coefficient. The HCC group reveals a distinct association pattern that signifies liver cancer and provides clinical decision support for suspected cases, motivating the inclusion of new features to form the augmented predictor panel. Logistic regression analysis with stepwise forward procedure was applied to the primary and augmented predictor sets, respectively. The obtained model with the new features attained 84.7% sensitivity and 88.4% overall accuracy in distinguishing HCC from NAD cases, which were significantly improved when compared with that without the new features.

摘要

电子健康记录 (EHR) 系统能够提供临床决策支持。本研究从香港四家医院收集了一组 112 份腹部计算机断层扫描成像检查报告,其中 59 份为肝细胞癌 (HCC) 或肝转移 (简称为 HCC 组),53 份为无异常发现 (NAD 组)。我们从报告中提取与肝癌相关的术语,并使用系统命名法医学术语 (SNOMED CT) 将其映射到本体特征。主要预测因子面板由这些本体特征组成。使用 Pearson 相关系数量化 HCC 和 NAD 组中每两个特征之间的关联水平。HCC 组显示出明显的关联模式,表明肝癌,并为疑似病例提供临床决策支持,促使纳入新特征以形成扩充预测因子面板。分别对主要预测因子集和扩充预测因子集应用逐步向前程序的逻辑回归分析。与不包含新特征的模型相比,使用新特征获得的模型在区分 HCC 和 NAD 病例方面的敏感性为 84.7%,总体准确性为 88.4%,显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60a2/5563431/3b24cb748a50/JHE2017-6493016.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验