Suppr超能文献

预测行为风险因素的地理差异:身心健康天数分析

Predicting geographical variations in behavioural risk factors: an analysis of physical and mental healthy days.

作者信息

Jia H, Muennig P, Lubetkin E I, Gold M R

机构信息

Department of Community Medicine, Mercer University School of Medicine, Macon, GA, USA.

出版信息

J Epidemiol Community Health. 2004 Feb;58(2):150-5. doi: 10.1136/jech.58.2.150.

Abstract

STUDY OBJECTIVES

To determine the validity of physical and mental unhealthy days as summary measures for county health status and to forward a method for examining county level health trends using a single year of data from the Behavioral Risk Factor Surveillance System (BRFSS).

DESIGN

The study analysed geographical variation in physical and mental unhealthy days at the state and county level using the 2000 BRFSS. Whereas state level analyses used individual level data, this research conducted multilevel regression analysis using county level data as independent variables and individual level reports of physical and mental unhealthy days as dependent variables.

SETTING

Population based samples of non-institutionalised civilian adult residents from each of the 50 states and the District of Columbia in the United States.

MAIN RESULTS

Socioeconomic variables predicted similar mean numbers of physical and mental unhealthy days at both the state and county level, validating the county level analyses. County level disability rates were strongly associated with county mean unhealthy days. Using the regression method we forward, it is possible to analyse county level trends using a single year of BRFSS data.

CONCLUSIONS

Physical and mental unhealthy days may be used as valid summary measures of county health status. Regression models may be used to assist local decision makers in assessing the needs of their communities and may be used to improve health resource allocation within states.

摘要

研究目的

确定身心健康不佳天数作为县健康状况汇总指标的有效性,并提出一种利用行为风险因素监测系统(BRFSS)单一年度数据来研究县级健康趋势的方法。

设计

本研究使用2000年BRFSS分析了州和县层面身心健康不佳天数的地理差异。州层面分析使用个体层面数据,而本研究以县层面数据为自变量、以身心健康不佳天数的个体层面报告为因变量进行多级回归分析。

研究背景

来自美国50个州和哥伦比亚特区的非机构化成年居民的基于人群的样本。

主要结果

社会经济变量在州和县层面均预测了类似的身心健康不佳天数均值,验证了县级分析结果。县级残疾率与县平均不佳天数密切相关。使用我们提出的回归方法,可以利用BRFSS单一年度数据来分析县级趋势。

结论

身心健康不佳天数可作为县健康状况的有效汇总指标。回归模型可用于协助地方决策者评估其社区的需求,并可用于改善州内的卫生资源分配。

相似文献

引用本文的文献

6
Predicting geographical variation in health-related quality of life.预测健康相关生活质量的地域差异。
Prev Med. 2019 Sep;126:105742. doi: 10.1016/j.ypmed.2019.05.030. Epub 2019 May 31.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验