Suppr超能文献

P位点转运RNA是核糖体移码的关键起始因子。

P-site tRNA is a crucial initiator of ribosomal frameshifting.

作者信息

Baranov Pavel V, Gesteland Raymond F, Atkins John F

机构信息

Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA.

出版信息

RNA. 2004 Feb;10(2):221-30. doi: 10.1261/rna.5122604.

Abstract

The expression of some genes requires a high proportion of ribosomes to shift at a specific site into one of the two alternative frames. This utilized frameshifting provides a unique tool for studying reading frame control. Peptidyl-tRNA slippage has been invoked to explain many cases of programmed frameshifting. The present work extends this to other cases. When the A-site is unoccupied, the P-site tRNA can be repositioned forward with respect to mRNA (although repositioning in the minus direction is also possible). A kinetic model is presented for the influence of both, the cognate tRNAs competing for overlapping codons in A-site, and the stabilities of P-site tRNA:mRNA complexes in the initial and new frames. When the A-site is occupied, the P-site tRNA can be repositioned backward. Whether frameshifting will happen depends on the ability of the A-site tRNA to subsequently be repositioned to maintain physical proximity of the tRNAs. This model offers an alternative explanation to previously published mechanisms of programmed frameshifting, such as out-of-frame tRNA binding, and a different perspective on simultaneous tandem tRNA slippage.

摘要

某些基因的表达需要高比例的核糖体在特定位点转移到两个交替阅读框之一中。这种利用移码的方式为研究阅读框控制提供了一种独特的工具。肽基 - tRNA 滑移已被用来解释许多程序性移码的情况。目前的工作将此扩展到其他情况。当 A 位点未被占据时,P 位点的 tRNA 可以相对于 mRNA 向前重新定位(尽管向负方向重新定位也是可能的)。针对在 A 位点竞争重叠密码子的同源 tRNA 以及初始阅读框和新阅读框中 P 位点 tRNA:mRNA 复合物的稳定性的影响,提出了一个动力学模型。当 A 位点被占据时,P 位点的 tRNA 可以向后重新定位。移码是否会发生取决于 A 位点的 tRNA 随后重新定位以维持 tRNA 物理接近度的能力。该模型为先前发表的程序性移码机制,如框外 tRNA 结合,提供了另一种解释,并对同时串联 tRNA 滑移给出了不同的观点。

相似文献

1
P-site tRNA is a crucial initiator of ribosomal frameshifting.
RNA. 2004 Feb;10(2):221-30. doi: 10.1261/rna.5122604.
2
Special peptidyl-tRNA molecules can promote translational frameshifting without slippage.
Mol Cell Biol. 1994 Dec;14(12):8107-16. doi: 10.1128/mcb.14.12.8107-8116.1994.
3
A new kinetic model reveals the synergistic effect of E-, P- and A-sites on +1 ribosomal frameshifting.
Nucleic Acids Res. 2008 May;36(8):2619-29. doi: 10.1093/nar/gkn100. Epub 2008 Mar 15.
4
Genome Expansion by tRNA +1 Frameshifting at Quadruplet Codons.
J Mol Biol. 2022 Apr 30;434(8):167440. doi: 10.1016/j.jmb.2021.167440. Epub 2022 Jan 4.
5
Twice exploration of tRNA +1 frameshifting in an elongation cycle of protein synthesis.
Nucleic Acids Res. 2021 Sep 27;49(17):10046-10060. doi: 10.1093/nar/gkab734.
6
Maintenance of the correct open reading frame by the ribosome.
EMBO Rep. 2003 May;4(5):499-504. doi: 10.1038/sj.embor.embor825.
8
Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site.
Proc Natl Acad Sci U S A. 1979 May;76(5):2143-7. doi: 10.1073/pnas.76.5.2143.

引用本文的文献

3
Nontriplet feature of genetic code in ciliates is a result of neutral evolution.
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2221683120. doi: 10.1073/pnas.2221683120. Epub 2023 May 22.
4
Thousands of human non-AUG extended proteoforms lack evidence of evolutionary selection among mammals.
Nat Commun. 2022 Dec 23;13(1):7910. doi: 10.1038/s41467-022-35595-6.
5
Translation of Plant RNA Viruses.
Viruses. 2021 Dec 13;13(12):2499. doi: 10.3390/v13122499.
7
Regulators of Viral Frameshifting: More Than RNA Influences Translation Events.
Annu Rev Virol. 2020 Sep 29;7(1):219-238. doi: 10.1146/annurev-virology-012120-101548. Epub 2020 Jun 29.
8
Molecular mechanism of translational stalling by inhibitory codon combinations and poly(A) tracts.
EMBO J. 2020 Feb 3;39(3):e103365. doi: 10.15252/embj.2019103365. Epub 2019 Dec 20.
9
Ribosome Collisions Result in +1 Frameshifting in the Absence of No-Go Decay.
Cell Rep. 2019 Aug 13;28(7):1679-1689.e4. doi: 10.1016/j.celrep.2019.07.046.
10

本文引用的文献

3
Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting.
Cold Spring Harb Symp Quant Biol. 2001;66:233-48. doi: 10.1101/sqb.2001.66.233.
4
Maintenance of the correct open reading frame by the ribosome.
EMBO Rep. 2003 May;4(5):499-504. doi: 10.1038/sj.embor.embor825.
5
RECODE 2003.
Nucleic Acids Res. 2003 Jan 1;31(1):87-9. doi: 10.1093/nar/gkg024.
6
An "integrated model" of programmed ribosomal frameshifting.
Trends Biochem Sci. 2002 Sep;27(9):448-54. doi: 10.1016/s0968-0004(02)02149-7.
8
Ribosome structure: revisiting the connection between translational accuracy and unconventional decoding.
Trends Biochem Sci. 2002 Apr;27(4):178-83. doi: 10.1016/s0968-0004(02)02064-9.
9
Recoding: translational bifurcations in gene expression.
Gene. 2002 Mar 20;286(2):187-201. doi: 10.1016/s0378-1119(02)00423-7.
10
Ribosome structure and the mechanism of translation.
Cell. 2002 Feb 22;108(4):557-72. doi: 10.1016/s0092-8674(02)00619-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验