Wahls Terry L, Barnett Mitchell J, Rosenthal Gary E
Medical Service, Iowa City VA Medical Center, Iowa City, Iowa 52242, USA.
Med Care. 2004 Feb;42(2):123-8. doi: 10.1097/01.mlr.0000108743.74496.ce.
Valid methods of predicting resource utilization in primary care populations are needed. We compared the predictive validity of a method based on diagnoses from administrative data (Adjusted Clinical Groups [ACGs]) and a method using medication profiles (Chronic Disease Index [CDI]).
This retrospective cohort study included 31,212 primary care patients in a Veterans Health Administration (VA) network who received outpatient medication prescriptions in 1999 and who had VA utilization in 1999 and 2000. ACG and CDI classifications were determined using 1999 data. Analyses compared the predictive validity with respect to outpatient clinic visits and days of hospital care.
Both ACGs and CDI explained a higher proportion of the variance in outpatient visits than demographic data alone. However, explained variance was higher for ACGs. For example, ACGs explained 30.2% of the variance in total visits in 1999, compared with 8.8% for the CDI. Results were similar for 2000, although the explained variance declined for both methods (eg, 16.3% and 5.7%, respectively, for total visits). Results were similar in analyses examining the discrimination of the 2 methods to predict hospital use; for example, c statistics for ACGs and CDI scores were 0.86 versus 0.70, respectively (P <0.05), for 1999 and 0.72 and 0.65, respectively (P <0.05), for 2000.
Among VA patients, ACGs had superior predictive validity than the CDI, a newer nonproprietary method based on pharmacy data. The findings suggest that diagnosis-based measures could be preferable for ambulatory case-mix adjustment and are valid across a wide range of populations.
需要有效的方法来预测基层医疗人群的资源利用情况。我们比较了基于行政数据诊断的方法(调整临床分组[ACG])和使用药物治疗档案的方法(慢性病指数[CDI])的预测效度。
这项回顾性队列研究纳入了退伍军人健康管理局(VA)网络中的31212名基层医疗患者,这些患者在1999年接受了门诊药物处方,并且在1999年和2000年有VA医疗服务利用情况。使用1999年的数据确定ACG和CDI分类。分析比较了两种方法在门诊就诊次数和住院天数方面的预测效度。
ACG和CDI对门诊就诊差异的解释比例均高于仅使用人口统计学数据。然而,ACG对差异的解释比例更高。例如,ACG解释了1999年总就诊次数差异的30.2%,而CDI为8.8%。2000年的结果类似,尽管两种方法对差异的解释比例均有所下降(例如,总就诊次数分别为16.3%和5.7%)。在检验两种方法预测住院情况的辨别力分析中结果类似;例如,1999年ACG和CDI评分的c统计量分别为0.86和0.70(P<0.05),2000年分别为0.72和0.65(P<0.05)。
在VA患者中,ACG的预测效度优于CDI,后者是一种基于药房数据的更新的非专利方法。研究结果表明,基于诊断的措施可能更适合门诊病例组合调整,并且在广泛的人群中都是有效的。