Suppr超能文献

类别数量影响基于规则的类别学习,但不影响信息整合类别学习:类别学习系统可分离的进一步证据。

Category number impacts rule-based but not information-integration category learning: further evidence for dissociable category-learning systems.

作者信息

Maddox W Todd, Filoteo J Vincent, Hejl Kelli D, Ing A David

机构信息

Department of Psychology, University of Texas, Austin, TX 78712, USA.

出版信息

J Exp Psychol Learn Mem Cogn. 2004 Jan;30(1):227-45. doi: 10.1037/0278-7393.30.1.227.

Abstract

Category number effects on rule-based and information-integration category learning were investigated. Category number affected accuracy and the distribution of best-fitting models in the rule-based task but had no effect on accuracy and little effect on the distribution of best-fining models in the information-integration task. In the 2 category conditions, rule-based learning was better than information-integration learning, whereas in the 4 category conditions, unidimensional and conjunctive rule-based learning was worse than information-integration learning. Rule-based strategies were used in the 2-category/rule-based condition, but about half of the observers used rule-based strategies in the 4-category unidimensional and conjunctive rule-based conditions. Information-integration strategies were used in the 4-category/ information-integration condition and by the end of training were used in the 2-category/information-integration condition.

摘要

研究了类别数量对基于规则和信息整合的类别学习的影响。类别数量影响了基于规则任务中的准确性和最佳拟合模型的分布,但对信息整合任务中的准确性没有影响,对最佳拟合模型的分布影响很小。在2类别条件下,基于规则的学习优于信息整合学习,而在4类别条件下,单维及联合基于规则的学习比信息整合学习差。在2类别/基于规则的条件下使用了基于规则的策略,但在4类别单维及联合基于规则的条件下,约一半的观察者使用了基于规则的策略。在4类别/信息整合条件下使用了信息整合策略,并且在训练结束时,2类别/信息整合条件下也使用了该策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验