Burnside Elizabeth S, Rubin Daniel L, Shachter Ross D, Sohlich Rita E, Sickles Edward A
Department of Radiology, University of California School of Medicine, Box 1667, San Francisco, CA 94143-1667, USA.
AJR Am J Roentgenol. 2004 Feb;182(2):481-8. doi: 10.2214/ajr.182.2.1820481.
We sought to determine whether a probabilistic expert system can provide accurate automated imaging-histologic correlations to aid radiologists in assessing the concordance of mammographic findings with the results of imaging-guided breast biopsies.
We created a Bayesian network in which Breast Imaging Reporting and Data System (BI-RADS) descriptors are used to convey the level of suspicion of mammographic abnormalities. Our system is a computer model that links BI-RADS descriptors with diseases of the breast using probabilities derived from the literature. Mammographic findings are used to update pretest probabilities (prevalence of disease) into posttest probabilities applying Bayes' theorem. We evaluated the histologic results of 92 consecutive imaging-guided breast biopsies for concordance with the mammographic findings during radiology-pathology review sessions. First, radiologists with no knowledge of the biopsy results chose BI-RADS descriptors for the mammographic findings. After the histologic diagnosis was revealed, the radiologists assessed concordance between the pathologic results and the mammographic findings. We then input the information gathered from these sessions into the Bayesian network to produce an automated mammographic-histologic correlation.
We had a sampling error rate of 1.1% (1/92 biopsies). Our expert system was able to integrate pathologic diagnoses and mammographic findings to obtain probabilities of sampling error, thereby enabling us to identify the incorrect pathologic diagnosis with 100% sensitivity while maintaining a specificity of 91%.
Our probabilistic expert system has the potential to help radiologists in identifying breast biopsy results that are discordant with mammographic findings and discovering cases in which biopsy sampling errors may have occurred.
我们试图确定一个概率专家系统是否能够提供准确的自动成像 - 组织学相关性,以帮助放射科医生评估乳腺钼靶检查结果与影像引导下乳腺活检结果的一致性。
我们创建了一个贝叶斯网络,其中使用乳腺影像报告和数据系统(BI-RADS)描述符来传达对乳腺钼靶异常的怀疑程度。我们的系统是一个计算机模型,它使用从文献中得出的概率将BI-RADS描述符与乳腺疾病联系起来。乳腺钼靶检查结果用于根据贝叶斯定理将检验前概率(疾病患病率)更新为检验后概率。在放射科 - 病理科会诊期间,我们评估了92例连续影像引导下乳腺活检的组织学结果与乳腺钼靶检查结果的一致性。首先,不了解活检结果的放射科医生为乳腺钼靶检查结果选择BI-RADS描述符。在揭示组织学诊断后,放射科医生评估病理结果与乳腺钼靶检查结果之间的一致性。然后,我们将从这些会诊中收集的信息输入贝叶斯网络,以产生自动的乳腺钼靶 - 组织学相关性。
我们的抽样错误率为1.1%(92例活检中有1例)。我们的专家系统能够整合病理诊断和乳腺钼靶检查结果,以获得抽样错误的概率,从而使我们能够以100%的敏感性识别错误的病理诊断,同时保持91%的特异性。
我们的概率专家系统有潜力帮助放射科医生识别与乳腺钼靶检查结果不一致的乳腺活检结果,并发现可能发生活检抽样错误的病例。