Suppr超能文献

CheY与CheA的P2结构域相互作用的结合和解离动力学。

Association and dissociation kinetics for CheY interacting with the P2 domain of CheA.

作者信息

Stewart Richard C, Van Bruggen Ricaele

机构信息

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.

出版信息

J Mol Biol. 2004 Feb 6;336(1):287-301. doi: 10.1016/j.jmb.2003.11.059.

Abstract

The chemotaxis system of Escherichia coli makes use of an extended two-component sensory response pathway in which CheA, an autophosphorylating protein histidine kinase (PHK) rapidly passes its phosphoryl group to CheY, a phospho-accepting response regulator protein (RR). The CheA-->CheY phospho-transfer reaction is 100-1000 times faster than the His-->Asp phospho-relays that operate in other (non-chemotaxis) two-component regulatory systems, suggesting that CheA and CheY have unique features that enhance His-->Asp phospho-transfer kinetics. One such feature could be the P2 domain of CheA. P2 encompasses a binding site for CheY, but an analogous RR-binding domain is not found in other PHKs. In previous work, we removed P2 from CheA, and this decreased the catalytic efficiency of CheA-->CheY phospho-transfer by a factor of 50-100. Here we examined the kinetics of the binding interactions between CheY and P2. The rapid association reaction (k(assn) approximately 10(8)M(-1)s(-1) at 25 degrees C and micro=0.03 M) exhibited a simple first-order dependence on P2 concentration and appeared to be largely diffusion-limited. Ionic strength (micro) had a moderate effect on k(assn) in a manner predictable based on the calculated electrostatic interaction energy of the protein binding surfaces and the expected Debye-Hückel shielding. The speed of binding reflects, in part, electrostatic interactions, but there is also an important contribution from the inherent plasticity of the complex and the resulting flexibility that this allows during the process of complex formation. Our results support the idea that the P2 domain of CheA contributes to the overall speed of phospho-transfer by promoting rapid association between CheY and CheA. However, this alone does not account for the ability of the chemotaxis system to operate much more rapidly than other two-component systems: k(cat) differences indicate that CheA and CheY also achieve the chemical events of phospho-transfer more rapidly than do PHK-RR pairs of slower systems.

摘要

大肠杆菌的趋化系统利用了一种扩展的双组分传感响应途径,其中CheA是一种自磷酸化蛋白组氨酸激酶(PHK),它能迅速将其磷酸基团传递给CheY,CheY是一种磷酸接受响应调节蛋白(RR)。CheA向CheY的磷酸转移反应比在其他(非趋化)双组分调节系统中起作用的组氨酸向天冬氨酸的磷酸中继反应快100 - 1000倍,这表明CheA和CheY具有独特的特征,可增强组氨酸向天冬氨酸的磷酸转移动力学。这样的一个特征可能是CheA的P2结构域。P2包含一个与CheY的结合位点,但在其他PHK中未发现类似的RR结合结构域。在先前的工作中,我们从CheA中去除了P2,这使CheA向CheY磷酸转移的催化效率降低了50 - 100倍。在此,我们研究了CheY与P2之间结合相互作用的动力学。快速缔合反应(在25℃和μ = 0.03 M时,k(assn)约为10(8)M(-1)s(-1))对P2浓度呈现简单的一级依赖性,并且似乎在很大程度上受扩散限制。离子强度(μ)对k(assn)有适度影响,其方式可根据蛋白质结合表面的计算静电相互作用能和预期的德拜 - 休克尔屏蔽来预测。结合速度部分反映了静电相互作用,但复合物固有的可塑性以及由此在复合物形成过程中产生的灵活性也有重要贡献。我们的结果支持这样一种观点,即CheA的P2结构域通过促进CheY与CheA之间的快速缔合,对磷酸转移的整体速度有贡献。然而,仅此一点并不能解释趋化系统比其他双组分系统运行快得多的能力:催化常数(k(cat))的差异表明,与较慢系统的PHK - RR对相比,CheA和CheY也能更快地完成磷酸转移的化学过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验