Suppr超能文献

一种用于在小区域检测疾病突发聚集性的广义线性混合模型方法及其在生物恐怖主义中的应用。

A generalized linear mixed models approach for detecting incident clusters of disease in small areas, with an application to biological terrorism.

作者信息

Kleinman Ken, Lazarus Ross, Platt Richard

机构信息

Department of Ambulatory Care and Prevention, Harvard Medical School, Boston, MA 02215-3920, USA.

出版信息

Am J Epidemiol. 2004 Feb 1;159(3):217-24. doi: 10.1093/aje/kwh029.

Abstract

Since the intentional dissemination of anthrax through the US postal system in the fall of 2001, there has been increased interest in surveillance for detection of biological terrorism. More generally, this could be described as the detection of incident disease clusters. In addition, the advent of affordable and quick geocoding allows for surveillance on a finer spatial scale than has been possible in the past. Surveillance for incident clusters of disease in both time and space is a relatively undeveloped arena of statistical methodology. Surveillance for bioterrorism detection, in particular, raises unique issues with methodological relevance. For example, the bioterrorism agents of greatest concern cause initial symptoms that may be difficult to distinguish from those of naturally occurring disease. In this paper, the authors propose a general approach to evaluating whether observed counts in relatively small areas are larger than would be expected on the basis of a history of naturally occurring disease. They implement the approach using generalized linear mixed models. The approach is illustrated using data on health-care visits (1996-1999) from a large Massachusetts managed care organization/multispecialty practice group in the context of syndromic surveillance for anthrax. The authors argue that there is great value in using the geographic data.

摘要

自2001年秋季炭疽在美国邮政系统中被蓄意传播以来,人们对用于检测生物恐怖主义的监测的兴趣日益增加。更一般地说,这可以被描述为对突发疾病聚集的检测。此外,经济实惠且快速的地理编码技术的出现,使得在比过去更精细的空间尺度上进行监测成为可能。对疾病在时间和空间上的突发聚集进行监测,是统计方法中一个相对未得到充分发展的领域。特别是用于生物恐怖主义检测的监测,提出了具有方法学相关性的独特问题。例如,最令人担忧的生物恐怖主义病原体所引发的初始症状,可能难以与自然发生疾病的症状区分开来。在本文中,作者提出了一种通用方法,用于评估在相对较小区域内观察到的病例数是否大于基于自然发生疾病历史所预期的病例数。他们使用广义线性混合模型来实施该方法。在炭疽症状监测的背景下,利用来自马萨诸塞州一个大型管理式医疗组织/多专科医疗集团的医疗就诊数据(1996 - 1999年)对该方法进行了说明。作者认为使用地理数据具有很大价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验