Suppr超能文献

带放置值的半参数ROC回归分析。

Semi-parametric ROC regression analysis with placement values.

作者信息

Cai Tianxi

机构信息

Department of Biostatistics, Harvard University, Boston, MA 02115, USA.

出版信息

Biostatistics. 2004 Jan;5(1):45-60. doi: 10.1093/biostatistics/5.1.45.

Abstract

Advances in technology provide new diagnostic tests for early detection of disease. Frequently, these tests have continuous outcomes. One popular method to summarize the accuracy of such a test is the Receiver Operating Characteristic (ROC) curve. Methods for estimating ROC curves have long been available. To examine covariate effects, Pepe (1997, 2000) and Alonzo and Pepe (2002) proposed distribution-free approaches based on a parametric regression model for the ROC curve. Cai and Pepe (2002) extended the parametric ROC regression model by allowing an arbitrary non-parametric baseline function. In this paper, while we follow the same semi-parametric setting as in that paper, we highlight a new estimator that offers several improvements over the earlier work: superior efficiency, the ability to estimate the covariate effects without estimating the non-parametric baseline function and easy implementation with standard software. The methodology is applied to a case control dataset where we evaluate the accuracy of the prostate-specific antigen as a biomarker for early detection of prostate cancer. Simulation studies suggest that the new estimator under the semi-parametric model, while always being more robust, has efficiency that is comparable to or better than the Alonzo and Pepe (2002) estimator from the parametric model.

摘要

技术进步为疾病的早期检测提供了新的诊断测试。通常,这些测试具有连续的结果。一种常用的总结此类测试准确性的方法是受试者工作特征(ROC)曲线。估计ROC曲线的方法早已存在。为了研究协变量的影响,佩佩(1997年、2000年)以及阿隆索和佩佩(2002年)基于ROC曲线的参数回归模型提出了无分布方法。蔡和佩佩(2002年)通过允许任意非参数基线函数扩展了参数ROC回归模型。在本文中,虽然我们采用与该论文相同的半参数设置,但我们突出了一种新的估计器,它比早期的工作有几个改进之处:更高的效率、无需估计非参数基线函数就能估计协变量影响的能力以及使用标准软件易于实现。该方法应用于一个病例对照数据集,在其中我们评估前列腺特异性抗原作为早期检测前列腺癌生物标志物的准确性。模拟研究表明,半参数模型下的新估计器虽然始终更稳健,但其效率与参数模型中阿隆索和佩佩(2002年)的估计器相当或更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验