Suppr超能文献

纵向标记数据的时间依赖性ROC曲线的半参数估计。

Semiparametric estimation of time-dependent ROC curves for longitudinal marker data.

作者信息

Zheng Yingye, Heagerty Patrick J

机构信息

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.

出版信息

Biostatistics. 2004 Oct;5(4):615-32. doi: 10.1093/biostatistics/kxh013.

Abstract

One approach to evaluating the strength of association between a longitudinal marker process and a key clinical event time is through predictive regression methods such as a time-dependent covariate hazard model. For example, a Cox model with time-varying covariates specifies the instantaneous risk of the event as a function of the time-varying marker and additional covariates. In this manuscript we explore a second complementary approach which characterizes the distribution of the marker as a function of both the measurement time and the ultimate event time. Our goal is to extend the standard diagnostic accuracy concepts of sensitivity and specificity so as to recognize explicitly both the timing of the marker measurement and the timing of disease. The accuracy of a longitudinal marker can be fully characterized using time-dependent receiver operating characteristic (ROC) curves. We detail a semiparametric estimation method for time-dependent ROC curves that adopts a regression quantile approach for longitudinal data introduced by Heagerty and Pepe (1999, Applied Statistics, 48, 533-551). We extend the work of Heagerty and Pepe (1999, Applied Statistics, 48, 533-551) by developing asymptotic distribution theory for the ROC estimators where the distributional shape for the marker is allowed to depend on covariates. To illustrate our method, we analyze pulmonary function measurements among cystic fibrosis subjects and estimate ROC curves that assess how well the pulmonary function measurement can distinguish subjects that progress to death from subjects that remain alive. Comparing the results from our semiparametric analysis to a fully parametric method discussed by Etzioni et al. (1999, Medical Decision Making, 19, 242-251) suggests that the ability to relax distributional assumptions may be important in practice.

摘要

评估纵向标志物过程与关键临床事件时间之间关联强度的一种方法是通过预测性回归方法,如时变协变量风险模型。例如,具有时变协变量的Cox模型将事件的瞬时风险指定为时变标志物和其他协变量的函数。在本论文中,我们探索了第二种互补方法,该方法将标志物的分布表征为测量时间和最终事件时间的函数。我们的目标是扩展敏感性和特异性的标准诊断准确性概念,以便明确认识到标志物测量的时间和疾病发生的时间。纵向标志物的准确性可以使用时变接收者操作特征(ROC)曲线来全面表征。我们详细介绍了一种用于时变ROC曲线的半参数估计方法,该方法采用了Heagerty和Pepe(1999年,《应用统计学》,48卷,533 - 551页)引入的纵向数据回归分位数方法。我们通过为ROC估计量发展渐近分布理论扩展了Heagerty和Pepe(1999年,《应用统计学》,48卷,533 - 551页)的工作,其中标志物的分布形状允许依赖于协变量。为了说明我们的方法,我们分析了囊性纤维化患者的肺功能测量数据,并估计了ROC曲线,以评估肺功能测量在区分进展至死亡的患者和存活患者方面的效果。将我们半参数分析的结果与Etzioni等人(1999年,《医学决策》,19卷,242 - 251页)讨论的完全参数方法的结果进行比较表明,在实践中放宽分布假设的能力可能很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验