Suppr超能文献

利用稀疏偶极耦合数据进行蛋白质结构预测。

Protein structure prediction using sparse dipolar coupling data.

作者信息

Qu Youxing, Guo Jun-tao, Olman Victor, Xu Ying

机构信息

Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.

出版信息

Nucleic Acids Res. 2004 Jan 26;32(2):551-61. doi: 10.1093/nar/gkh204. Print 2004.

Abstract

Residual dipolar coupling (RDC) represents one of the most exciting emerging NMR techniques for protein structure studies. However, solving a protein structure using RDC data alone is still a highly challenging problem. We report here a computer program, RDC-PROSPECT, for protein structure prediction based on a structural homolog or analog of the target protein in the Protein Data Bank (PDB), which best aligns with the (15)N-(1)H RDC data of the protein recorded in a single ordering medium. Since RDC-PROSPECT uses only RDC data and predicted secondary structure information, its performance is virtually independent of sequence similarity between a target protein and its structural homolog/analog, making it applicable to protein targets beyond the scope of current protein threading techniques. We have tested RDC-PROSPECT on all (15)N-(1)H RDC data (representing 43 proteins) deposited in the BioMagResBank (BMRB) database. The program correctly identified structural folds for 83.7% of the target proteins, and achieved an average alignment accuracy of 98.1% residues within a four-residue shift.

摘要

剩余偶极耦合(RDC)是蛋白质结构研究中最令人兴奋的新兴核磁共振技术之一。然而,仅使用RDC数据解析蛋白质结构仍然是一个极具挑战性的问题。我们在此报告一个计算机程序RDC - PROSPECT,用于基于蛋白质数据库(PDB)中目标蛋白质的结构同源物或类似物进行蛋白质结构预测,该同源物或类似物与在单一有序介质中记录的蛋白质的(15)N - (1)H RDC数据最佳匹配。由于RDC - PROSPECT仅使用RDC数据和预测的二级结构信息,其性能实际上与目标蛋白质与其结构同源物/类似物之间的序列相似性无关,这使得它适用于当前蛋白质穿线技术范围之外的蛋白质目标。我们已在BioMagResBank(BMRB)数据库中存入的所有(15)N - (1)H RDC数据(代表43种蛋白质)上测试了RDC - PROSPECT。该程序正确识别了83.7%的目标蛋白质的结构折叠,并在四个残基位移范围内实现了平均98.1%残基的比对准确性。

相似文献

本文引用的文献

9
Rapid classification of a protein fold family using a statistical analysis of dipolar couplings.
Bioinformatics. 2003 Aug 12;19(12):1549-55. doi: 10.1093/bioinformatics/btg201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验