Asthagiri D, Pratt Lawrence R, Paulaitis Michael E, Rempe Susan B
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
J Am Chem Soc. 2004 Feb 4;126(4):1285-9. doi: 10.1021/ja0382967.
The hydration of some of the alkaline earth divalent metal cations and first row transition metal cations is considered within the quasi-chemical theory of solutions. Quantum chemical calculations provide information on the chemically important interactions between the ion and its first-shell water molecules. A dielectric continuum model supplies the outer-shell contribution. The theory then provides the framework to mesh these quantities together. The agreement between the calculated and experimental quantities is good. For the transition metal cations, it is seen that the ligand field contributions play an important role in the physics of hydration. Removing these bonding contributions from the computed hydration free energy results in a linear decrease in the hydration free energy along the period. It is precisely such effects that molecular mechanics force fields have not captured. The implications and extensions of this study to metal atoms in proteins are suggested.
在溶液的准化学理论框架内,研究了部分碱土二价金属阳离子和第一排过渡金属阳离子的水合作用。量子化学计算提供了离子与其第一壳层水分子之间重要化学相互作用的信息。介电连续介质模型给出了外层的贡献。该理论提供了将这些量整合在一起的框架。计算值与实验值吻合良好。对于过渡金属阳离子,可见配体场贡献在水合物理过程中起着重要作用。从计算得到的水合自由能中去除这些键合贡献,会导致水合自由能沿周期线性下降。正是这样的效应分子力学力场尚未捕捉到。本文还提出了该研究对蛋白质中金属原子的意义及拓展。