Suppr超能文献

乙酰胆碱与嗅觉感知学习。

Acetylcholine and olfactory perceptual learning.

作者信息

Wilson Donald A, Fletcher Max L, Sullivan Regina M

机构信息

Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA.

出版信息

Learn Mem. 2004 Jan-Feb;11(1):28-34. doi: 10.1101/lm.66404.

Abstract

Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform cortex. These changes include enhanced representation of the molecular features of familiar odors by mitral cells in the olfactory bulb, and synthetic coding of multiple coincident odorant features into odor objects by cortical neurons. In this paper, data are reviewed that show the critical role of acetylcholine (Ach) in olfactory system function and plasticity, and cholinergic modulation of olfactory perceptual learning at both the behavioral and cortical level.

摘要

嗅觉感知学习是一种相对长期的、通过学习获得的感知敏锐度提高,在人类和动物中均有描述。近期电生理研究的数据表明,嗅觉感知学习可能与嗅球和梨状皮质中神经元的气味感受野变化相关。这些变化包括嗅球中的二尖瓣细胞对熟悉气味分子特征的增强表征,以及皮质神经元将多个同时出现的气味特征综合编码为气味对象。本文回顾了相关数据,这些数据显示了乙酰胆碱(Ach)在嗅觉系统功能和可塑性中的关键作用,以及在行为和皮质水平上胆碱能对嗅觉感知学习的调节作用。

相似文献

1
Acetylcholine and olfactory perceptual learning.
Learn Mem. 2004 Jan-Feb;11(1):28-34. doi: 10.1101/lm.66404.
3
Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
J Neurosci. 2019 Dec 11;39(50):10002-10018. doi: 10.1523/JNEUROSCI.1234-19.2019. Epub 2019 Oct 31.
4
Receptive fields in the rat piriform cortex.
Chem Senses. 2001 Jun;26(5):577-84. doi: 10.1093/chemse/26.5.577.
5
Comparison of odor receptive field plasticity in the rat olfactory bulb and anterior piriform cortex.
J Neurophysiol. 2000 Dec;84(6):3036-42. doi: 10.1152/jn.2000.84.6.3036.
6
High-frequency oscillations are not necessary for simple olfactory discriminations in young rats.
J Neurosci. 2005 Jan 26;25(4):792-8. doi: 10.1523/JNEUROSCI.4673-04.2005.
7
Olfactory bulb mitral-tufted cell plasticity: odorant-specific tuning reflects previous odorant exposure.
J Neurosci. 2003 Jul 30;23(17):6946-55. doi: 10.1523/JNEUROSCI.23-17-06946.2003.
9
Neural correlates of olfactory learning: Critical role of centrifugal neuromodulation.
Learn Mem. 2010 Oct 27;17(11):561-70. doi: 10.1101/lm.941510. Print 2010 Nov.
10
Rapid, experience-induced enhancement in odorant discrimination by anterior piriform cortex neurons.
J Neurophysiol. 2003 Jul;90(1):65-72. doi: 10.1152/jn.00133.2003. Epub 2003 Mar 26.

引用本文的文献

1
Vagus nerve stimulation recruits the central cholinergic system to enhance perceptual learning.
Nat Neurosci. 2024 Nov;27(11):2152-2166. doi: 10.1038/s41593-024-01767-4. Epub 2024 Sep 16.
3
Common principles for odour coding across vertebrates and invertebrates.
Nat Rev Neurosci. 2024 Jul;25(7):453-472. doi: 10.1038/s41583-024-00822-0. Epub 2024 May 28.
4
Modulation of time in Parkinson's disease: a review and perspective on cognitive rehabilitation.
Front Psychiatry. 2024 Apr 15;15:1379496. doi: 10.3389/fpsyt.2024.1379496. eCollection 2024.
5
Rapid Effects of Vagus Nerve Stimulation on Sensory Processing Through Activation of Neuromodulatory Systems.
Front Neurosci. 2022 Jul 5;16:922424. doi: 10.3389/fnins.2022.922424. eCollection 2022.
6
Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks.
Front Cell Neurosci. 2021 Jun 22;15:662184. doi: 10.3389/fncel.2021.662184. eCollection 2021.
8
Long-Range GABAergic Inhibition Modulates Spatiotemporal Dynamics of the Output Neurons in the Olfactory Bulb.
J Neurosci. 2021 Apr 21;41(16):3610-3621. doi: 10.1523/JNEUROSCI.1498-20.2021. Epub 2021 Mar 9.
9
Experience enhances certainty about olfactory stimuli under bulbar cholinergic control.
Learn Mem. 2020 Sep 15;27(10):414-417. doi: 10.1101/lm.051854.120. Print 2020 Oct.
10
Chronic Exposure to High Altitude: Synaptic, Astroglial and Memory Changes.
Sci Rep. 2019 Nov 11;9(1):16406. doi: 10.1038/s41598-019-52563-1.

本文引用的文献

1
Receptor contributions to configural and elemental odor mixture perception.
Behav Neurosci. 2003 Oct;117(5):1108-14. doi: 10.1037/0735-7044.117.5.1108.
2
Olfactory bulb mitral-tufted cell plasticity: odorant-specific tuning reflects previous odorant exposure.
J Neurosci. 2003 Jul 30;23(17):6946-55. doi: 10.1523/JNEUROSCI.23-17-06946.2003.
3
The fundamental role of memory in olfactory perception.
Trends Neurosci. 2003 May;26(5):243-7. doi: 10.1016/S0166-2236(03)00076-6.
4
Rapid, experience-induced enhancement in odorant discrimination by anterior piriform cortex neurons.
J Neurophysiol. 2003 Jul;90(1):65-72. doi: 10.1152/jn.00133.2003. Epub 2003 Mar 26.
6
Cholinergic modulation of sensory representations in the olfactory bulb.
Neural Netw. 2002 Jun-Jul;15(4-6):709-17. doi: 10.1016/s0893-6080(02)00061-8.
7
Spontaneous versus reinforced olfactory discriminations.
J Neurosci. 2002 Aug 15;22(16):6842-5. doi: 10.1523/JNEUROSCI.22-16-06842.2002.
8
Oscillations and sparsening of odor representations in the mushroom body.
Science. 2002 Jul 19;297(5580):359-65. doi: 10.1126/science.1070502.
10
Flavor experiences during formula feeding are related to preferences during childhood.
Early Hum Dev. 2002 Jul;68(2):71-82. doi: 10.1016/s0378-3782(02)00008-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验