Suppr超能文献

小波包变换与人工神经网络在动力学多组分同时测定中的应用。

Wavelet packet transform and artificial neural network applied to simultaneous kinetic multicomponent determination.

作者信息

Ren Shouxin, Gao Ling

机构信息

Department of Chemistry, Inner Mongolian University, 010021, Huhhot, Inner Mongolia, China.

出版信息

Anal Bioanal Chem. 2004 Mar;378(5):1392-8. doi: 10.1007/s00216-003-2395-y. Epub 2004 Jan 28.

Abstract

This paper presents a novel method, named wavelet packet transform based multilayer feedforward neural network with Levenberg-Marquardt and back propagation algorithm (WPTLMBP), developed for simultaneous kinetic determination of Cu(II), Fe(III), and Ni(II). Wavelet packet representations of signals provided a local time-frequency description, thus in the wavelet packet domain the quality of noise removal can be improved. The artificial neural network was applied for non-linear multivariate calibration. In this study, by optimization, wavelet packet function, decomposition level and number of hidden nodes for WPTLMBP method were selected as Db2, 2, and 4 respectively. A program PWPTLMBP was designed to perform simultaneous kinetic determination of Cu(II), Fe(III), and Ni(II). The relative standard error of prediction (RSEP) for all components with WPTLMBP, LM-BP-MLFN, and PLS methods were 6.39, 10.4, and 8.30%, respectively. Experimental results showed the proposed method to be successful and better than the others.

摘要

本文提出了一种名为基于小波包变换的多层前馈神经网络结合Levenberg-Marquardt和反向传播算法(WPTLMBP)的新方法,用于同时动力学测定铜(II)、铁(III)和镍(II)。信号的小波包表示提供了局部时频描述,因此在小波包域中可以提高去噪质量。人工神经网络用于非线性多变量校准。在本研究中,通过优化,WPTLMBP方法的小波包函数、分解层数和隐藏节点数分别选择为Db2、2和4。设计了一个程序PWPTLMBP来同时动力学测定铜(II)、铁(III)和镍(II)。WPTLMBP、LM-BP-MLFN和PLS方法对所有组分的预测相对标准误差(RSEP)分别为6.39%、10.4%和8.30%。实验结果表明所提出的方法是成功的,并且优于其他方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验