Suppr超能文献

Resolution of overlapping signals in spectrometry using a wavelet packet transform and an Elman recurrent neural network.

作者信息

Ren Shouxin, Gao Ling

机构信息

Department of Chemistry, Inner Mongolia University, Huhhot, 010021, Inner Mongolia, China.

出版信息

Anal Bioanal Chem. 2007 May;388(1):215-25. doi: 10.1007/s00216-007-1210-6. Epub 2007 Mar 6.

Abstract

A novel method named a wavelet packet transform based Elman recurrent neural network (WPTERNN) was proposed for the simultaneous UV-visible spectrometric determination of Cu(II), Cd(II) and Zn(II). This method combined wavelet packet denoising with an Elman recurrent neural network. A wavelet packet transform was applied to perform data compression, to extract relevant information, and to eliminate noise and collinearity. An Elman recurrent network was applied for nonlinear multivariate calibration. In this case, using trials, the kind of wavelet function, the decomposition level, and the number of hidden nodes for the WPTERNN method were selected as Daubechies 14, 3, and 8, respectively. A program (PWPTERNN) was designed that could perform the simultaneous determination of Cu(II), Cd(II) and Zn(II). The relative standard errors of prediction (RSEP) obtained for all components using WPTERNN, a Elman recurrent neural network (ERNN), partial least squares (PLS), principal component regression (PCR), Fourier transform based PCR (FTPCR), and multivariate linear regression (MLR) were compared. Experimental results demonstrated that the WPTERRN method was successful even where there was severe overlap of spectra. The results obtained from an additional test case also demonstrated that the WPTERNN method performed very well.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验