Lauck L, Vasconcellos A R, Luzzi R
Departamento de Física, Universidade Federal de Santa Catarina 88049, Florianópolis, SC, Brasil.
J Theor Biol. 1992 Sep 7;158(1):1-13. doi: 10.1016/s0022-5193(05)80645-9.
Following Fröhlich we consider a system that models a biological one, for example, a long chain of proteins possessing polar modes of vibration and where energy is pumped through metabolic processes. We consider the effect produced by free electrons that are usually present as hole carriers in proteins with electron-donor molecules. A theory of relaxation based on the non-equilibrium statistical operator method is used in the derivation of the kinetic equations to introduce non-linearities due to interactions of the polar vibrations with the carriers and with a thermal bath. These non-linearities arising from high order relaxation processes lead to the emergence of the Fröhlich effect in the polar modes, i.e. the occurrence of a (non-equilibrium) Bose-Einstein-like condensation. It points to an instability of the system that seems to be followed by a morphological transformation in the form of a spatially ordered dissipative structure.
遵循弗勒利希的理论,我们考虑一个对生物系统进行建模的系统,例如,一条具有极性振动模式且能量通过代谢过程输入的长蛋白质链。我们考虑通常作为电子供体分子存在于蛋白质中的空穴载流子形式的自由电子所产生的效应。在推导动力学方程时,使用了基于非平衡统计算子方法的弛豫理论,以引入由于极性振动与载流子以及与热浴相互作用而产生的非线性。这些由高阶弛豫过程产生的非线性导致极性模式中出现弗勒利希效应,即出现类似(非平衡)玻色 - 爱因斯坦凝聚的现象。这表明系统存在不稳定性,随后似乎会以空间有序耗散结构的形式发生形态转变。