Suppr超能文献

学习外语元音。

Learning foreign vowels.

作者信息

Kingston John

机构信息

Linguistics Department, University of Massachusetts, Amherst 01003-9274, USA.

出版信息

Lang Speech. 2003;46(Pt 2-3):295-349. doi: 10.1177/00238309030460020201.

Abstract

Two hypotheses have recently been put forward to account for listeners' ability to distinguish and learn contrasts between speech sounds in foreign languages. First, Best's Perceptual Assimilation Model and Flege's Speech Learning Model both predict that the ease with which a listener can tell one non-native phoneme from another varies directly with the extent to which these sounds assimilate to different native phonemes (Best, 1994; also Best, McRoberts, & Goodell, 2001; Flege, 1991). Second, Logan, Lively, & Pisoni (1991) have argued that training listeners to identify non-native phonemes teaches them sets of exemplars rather than more abstract distinctive feature values. I report here the results of three sets of experiments designed to test these hypotheses, in which American English listeners were trained to categorize German nonlow vowels. The first set of experiments show that some instances of the same contrast between German vowels are more easily discriminated than others, a result incompatible with the predictions of either Best's or Flege's models, but compatible with the alternative category recognition interpretation. The second set of experiments reveals effects of contextual and speaker variation on listeners' ability to learn [tense] but not [high] contrasts between foreign vowels, and are thus at least partly compatible with an exemplar model of foreign category learning (Pisoni, Lively, & Logan, 1994; also Nosofsky, 1986). The third set of experiments compares the predictions of Nosofsky's (1986) selective attention exemplar model of category learning with those of a feature learning model in tests of listeners' learning the natural classes to which the German vowels belong. The results are mixed: listeners learned the features that define the natural classes of [+/- high] and [+/- back] vowels, but could have learned either the feature that defines the natural classes of [+/- tense] vowels or sets of [+/- tense] exemplars. Natural classes defined by abstract distinctive feature values are thus learnable, even if their membership is phonetically polymorphous.

摘要

最近提出了两种假说,以解释听众区分和学习外语语音对比的能力。第一,贝斯特的感知同化模型和弗莱格的语音学习模型都预测,听众区分一个非母语音素与另一个非母语音素的难易程度,与这些音素同化于不同母语音素的程度直接相关(贝斯特,1994年;另见贝斯特、麦克罗伯茨和古德尔,2001年;弗莱格,1991年)。第二,洛根、利夫利和皮索尼(1991年)认为,训练听众识别非母语音素会教会他们一组组的范例,而不是更抽象的区别性特征值。我在此报告三组实验的结果,这些实验旨在检验这些假说,实验中美国英语听众接受训练,对德语非低元音进行分类。第一组实验表明,德语元音之间相同对比的某些实例比其他实例更容易区分,这一结果与贝斯特或弗莱格模型的预测均不相符,但与另类的类别识别解释相符。第二组实验揭示了语境和说话者变化对听众学习外语元音之间[紧]而非[高]对比能力的影响,因此至少部分与外语类别学习的范例模型相符(皮索尼、利夫利和洛根,1994年;另见诺索夫斯基,1986年)。第三组实验在测试听众学习德语元音所属自然类别的过程中,比较了诺索夫斯基(1986年)的类别学习选择性注意范例模型与特征学习模型的预测。结果喜忧参半:听众学会了定义[±高]和[±后]元音自然类别的特征,但对于定义[±紧]元音自然类别的特征或者[±紧]范例集,他们可能二者都学会了。因此,由抽象区别性特征值定义的自然类别是可学习的,即便其成员在语音上具有多态性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验