Suppr超能文献

ESPD:一种基因表达谱背后的模式检测模型。

ESPD: a pattern detection model underlying gene expression profiles.

作者信息

Tang Chun, Zhang Aidong, Ramanathan Murali

机构信息

Department of Computer Science and Engineering, State University of New York at Buffalo, NY 14260, USA.

出版信息

Bioinformatics. 2004 Apr 12;20(6):829-38. doi: 10.1093/bioinformatics/btg486. Epub 2004 Jan 29.

Abstract

MOTIVATION

DNA arrays permit rapid, large-scale screening for patterns of gene expression and simultaneously yield the expression levels of thousands of genes for samples. The number of samples is usually limited, and such datasets are very sparse in high-dimensional gene space. Furthermore, most of the genes collected may not necessarily be of interest and uncertainty about which genes are relevant makes it difficult to construct an informative gene space. Unsupervised empirical sample pattern discovery and informative genes identification of such sparse high-dimensional datasets present interesting but challenging problems.

RESULTS

A new model called empirical sample pattern detection (ESPD) is proposed to delineate pattern quality with informative genes. By integrating statistical metrics, data mining and machine learning techniques, this model dynamically measures and manipulates the relationship between samples and genes while conducting an iterative detection of informative space and the empirical pattern. The performance of the proposed method with various array datasets is illustrated.

摘要

动机

DNA阵列允许对基因表达模式进行快速、大规模筛选,并同时得出样本中数千个基因的表达水平。样本数量通常有限,并且此类数据集在高维基因空间中非常稀疏。此外,收集到的大多数基因不一定是我们感兴趣的,而哪些基因是相关的不确定性使得构建一个信息丰富的基因空间变得困难。对此类稀疏高维数据集进行无监督的经验样本模式发现和信息基因识别存在有趣但具有挑战性的问题。

结果

提出了一种名为经验样本模式检测(ESPD)的新模型,以用信息基因描绘模式质量。通过整合统计指标、数据挖掘和机器学习技术,该模型在对信息空间和经验模式进行迭代检测时,动态测量和操纵样本与基因之间的关系。文中展示了所提方法在各种阵列数据集上的性能。

相似文献

1
ESPD: a pattern detection model underlying gene expression profiles.ESPD:一种基因表达谱背后的模式检测模型。
Bioinformatics. 2004 Apr 12;20(6):829-38. doi: 10.1093/bioinformatics/btg486. Epub 2004 Jan 29.
3
Bayesian class discovery in microarray datasets.微阵列数据集中的贝叶斯类发现
IEEE Trans Biomed Eng. 2004 May;51(5):707-18. doi: 10.1109/TBME.2004.824139.
5
mdclust--exploratory microarray analysis by multidimensional clustering.mdclust——通过多维聚类进行探索性微阵列分析。
Bioinformatics. 2004 Apr 12;20(6):931-6. doi: 10.1093/bioinformatics/bth009. Epub 2004 Jan 29.
9
An associative analysis of gene expression array data.基因表达阵列数据的关联分析。
Bioinformatics. 2003 Jan 22;19(2):204-11. doi: 10.1093/bioinformatics/19.2.204.

引用本文的文献

本文引用的文献

1
Optimization by simulated annealing.模拟退火优化。
Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.
10
J-Express: exploring gene expression data using Java.J-Express:使用Java探索基因表达数据。
Bioinformatics. 2001 Apr;17(4):369-70. doi: 10.1093/bioinformatics/17.4.369.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验