Suppr超能文献

仅含铁氢化酶的酶促机制:关于双铁簇上氢-氢键形成/断裂以及协同质子和电子转移的密度泛函研究

Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers.

作者信息

Zhou Taijin, Mo Yirong, Liu Aimin, Zhou Zhaohui, Tsai K R

机构信息

Department of Chemistry and the State Key Laboratory for Physical Chemistry of the Solid Surface, Xiamen University, Xiamen 361005, People's Republic of China.

出版信息

Inorg Chem. 2004 Feb 9;43(3):923-30. doi: 10.1021/ic0342301.

Abstract

The mechanism of the enzymatic hydrogen bond forming/breaking (2H(+) + 2e<==>H(2)) and the plausible charge and spin states of the catalytic diiron subcluster FeFe of the H cluster in Fe-only hydrogenases are probed computationally by the density functional theory. It is found that the active center FeFe can be rationally simulated as [H(CO)(CN(-))Fe(p)(CO(b))(mu-SRS)Fe(d)(CO)(CN(-))L], where the monovalence [H] stands for the 4Fe4S(2+) subcluster bridged to the FeFe moiety, (CH(3)S) represents a Cys-S, and (CO(b)) represents a bridging CO. L could be a CO, H(2)O, H(-), H(2), or a vacant coordination site on Fe(d). Model structures of possible redox states are optimized and compared with the X-ray crystallographic structures and FTIR experimental data. On the basis of the optimal structures, we study the most favorable path of concerted proton transfer and electron transfer in H(2)-forming/breaking reactions at FeFe. Previous mechanisms derived from quantum chemical computations of Fe-only hydrogenases (Cao, Z.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3734; Fan, H.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3828) involved an unidentified bridging residue (mu-SRS), which is either a propanedithiolate or dithiomethylamine. Our proposed mechanism, however, does not require such a ligand but makes use of a shuttle of oxidation states of the iron atoms and a reaction site between the two iron atoms. Therefore, the hydride H(b)(-) (bridged to Fe(p) and Fe(d)) and eta(2)-H(2) at Fe(p) or Fe(d) most possibly play key roles in the dihydrogen reversible oxidation at the FeFe active center. This suggested way of H(2) formation/splitting is reminiscent of the mechanism of [NiFe] hydrogenases and therefore would unify the mechanisms of the two related enzymes.

摘要

通过密度泛函理论对仅含铁的氢化酶中H簇的催化二铁亚簇FeFe的酶促氢键形成/断裂机制(2H(+) + 2e<==>H(2))以及可能的电荷和自旋态进行了计算研究。结果发现,活性中心FeFe可以合理地模拟为[H(CO)(CN(-))Fe(p)(CO(b))(μ-SRS)Fe(d)(CO)(CN(-))L],其中单价的[H]代表与FeFe部分相连的4Fe4S(2+)亚簇,(CH(3)S)代表半胱氨酸-S,(CO(b))代表桥连的CO。L可以是CO、H(2)O、H(-)、H(2)或Fe(d)上的空配位位点。对可能的氧化态的模型结构进行了优化,并与X射线晶体学结构和FTIR实验数据进行了比较。基于优化后的结构,我们研究了在FeFe处H(2)形成/断裂反应中协同质子转移和电子转移的最有利路径。之前从仅含铁的氢化酶的量子化学计算中得出的机制(Cao, Z.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3734; Fan, H.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3828)涉及一个未确定的桥连残基(μ-SRS),它要么是丙烷二硫醇盐要么是二硫代甲胺。然而,我们提出的机制不需要这样的配体,而是利用铁原子氧化态的穿梭以及两个铁原子之间的反应位点。因此,氢化物H(b)(-)(桥连到Fe(p)和Fe(d))以及Fe(p)或Fe(d)处的η(2)-H(2)最有可能在FeFe活性中心的二氢可逆氧化中起关键作用。这种提出的H(2)形成/分裂方式让人联想到[NiFe]氢化酶的机制,因此将统一这两种相关酶的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验