Institut für Chemie, Technische Universität Berlin , Strasse des 17 Juni 135, 10623 Berlin, Germany.
Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
J Am Chem Soc. 2017 Nov 22;139(46):16894-16902. doi: 10.1021/jacs.7b09751. Epub 2017 Nov 9.
[FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (H) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that H is the catalytic state one step prior to H formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H bond formation by [FeFe]-hydrogenases.
[FeFe]-氢化酶是能够将质子可逆地还原为氢气的金属酶,其还原速度非常快。我们使用 Fe 核共振振动光谱(NRVS)和密度泛函理论(DFT)对来自莱茵衣藻和脱硫脱硫弧菌的 [FeFe]-氢化酶中的催化活性氢化物态(H)进行了表征。H/D 交换鉴定出源自双核铁辅因子的两个 Fe-H 弯曲模式。DFT 计算表明,这些光谱特征源于铁结合的末端氢化物,Fe-H 振动频率高度依赖于催化辅因子的胺基与氢化物以及保守的半胱氨酸之间的相互作用,该半胱氨酸将质子传递链终止于活性位点。结果表明,H 是 H 形成前的催化态。因此,所观察到的振动光谱为 [FeFe]-氢化酶中 H 键形成的反应坐标提供了机制见解。