Yang Xinzheng, Hall Michael B
Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
J Am Chem Soc. 2009 Aug 12;131(31):10901-8. doi: 10.1021/ja902689n.
A fully optimized resting state model with a strong Fe-H(delta-)...H(delta+)-O dihydrogen bond for the active site of the third type of hydrogenase, [Fe]-hydrogenase, is proposed from density functional theory (DFT) calculations on the reformulated active site from the recent X-ray crystal structure study of C176A (Cys176 was mutated to an alanine) mutated [Fe]-hydrogenase in the presence of dithiothreitol. The computed vibrational frequencies for this new active site model possess an average error of only +/-4.5 cm(-1) with respect to the wild-type [Fe]-hydrogenase. Based on this resting state model, a new mechanism with the following unusual aspects for hydrogen activation catalyzed by [Fe]-hydrogenase is also proposed from DFT calculations. (1) Unexpected dual pathways for H(2) cleavage with proton transfer to Cys176-sulfur or 2-pyridinol's oxygen for the formation and regeneration of the resting state with an Fe-H(delta-)...H(delta+)-O dihydrogen bond before the appearance of methenyl-H(4)MPT(+) (MPT(+)). (2) The strong dihydrogen bond in this resting state structure prevents D(2)/H(2)O exchange. (3) Only upon the arrival of MPT(+) with its strong hydride affinity can D(2)/H(2)O exchange take place as the arrival of MPT(+) triggers the breaking of the strong Fe-H(delta-)...H(delta+)-O dihydrogen bond by taking a hydride from the iron center and initiating the next H(2) (D(2)) cleavage. This new mechanism is completely different than that previously proposed (J. Am. Chem. Soc. 2008, 130, 14036) which was based on an active site model related to an earlier crystal structure. Here, Fe's role is H(2) capture and hydride formation without MPT(+) while the pyridone's special role involves the protection of the hydride by the dihydrogen bond.
基于对在二硫苏糖醇存在下C176A(半胱氨酸176突变为丙氨酸)突变型[Fe] - 氢化酶的最新X射线晶体结构研究中重新构建的活性位点进行密度泛函理论(DFT)计算,提出了一种针对第三种类型氢化酶即[Fe] - 氢化酶活性位点的、具有强Fe - H(δ-)...H(δ+)-O双氢键的完全优化的静止态模型。对于这个新的活性位点模型,计算得到的振动频率相对于野生型[Fe] - 氢化酶的平均误差仅为±4.5 cm-1。基于这个静止态模型,通过DFT计算还提出了一种[Fe] - 氢化酶催化氢活化的具有以下不同寻常之处的新机制。(1)H2裂解存在意外的双重途径,质子转移至半胱氨酸176的硫原子或2 - 吡啶醇的氧原子,用于在亚甲基 - H4MPT+(MPT+)出现之前形成和再生具有Fe - H(δ-)...H(δ+)-O双氢键的静止态。(2)这种静止态结构中的强双氢键阻止了D2/H2O交换。(3)只有当具有强氢化物亲和力的MPT+到达时,D2/H2O交换才会发生,因为MPT+的到达通过从铁中心夺取一个氢化物触发了强Fe - H(δ-)...H(δ+)-O双氢键的断裂,并启动了下一次H2(D2)裂解。这个新机制与之前基于与早期晶体结构相关的活性位点模型所提出的机制(《美国化学会志》2008年,130卷,14036页)完全不同。在这里,铁的作用是在没有MPT+的情况下捕获H2并形成氢化物,而吡啶酮的特殊作用涉及通过双氢键保护氢化物。