Suppr超能文献

利用计算红外光谱法优化铁-铁氢化酶的活性位点结构。

Refining the active site structure of iron-iron hydrogenase using computational infrared spectroscopy.

作者信息

Tye Jesse W, Darensbourg Marcetta Y, Hall Michael B

机构信息

Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.

出版信息

Inorg Chem. 2008 Apr 7;47(7):2380-8. doi: 10.1021/ic7013732. Epub 2008 Feb 28.

Abstract

Iron-iron hydrogenases ([FeFe]H2ases) are exceptional natural catalysts for the reduction of protons to dihydrogen. Future biotechnological applications based on these enzymes require a precise understanding of their structures and properties. Although the [FeFe]H2ases have been characterized by single-crystal X-ray crystallography and a range of spectroscopic techniques, ambiguities remain regarding the details of the molecular structures of the spectroscopically observed forms. We use density functional theory (DFT) computations on small-molecule computational models of the [FeFe]H2ase active site to address this problem. Specifically, a series of structural candidates are geometry optimized and their infrared (IR) spectra are simulated using the computed C-O and C-N stretching frequencies and infrared intensities. Structural assignments are made by comparing these spectra to the experimentally determined IR spectra for each form. The H red form is assigned as a mixture of an Fe(I)Fe(I) form with an open site on the distal iron center and either a Fe(I)Fe(I) form in which the distal cyanide has been protonated or a Fe(II)Fe(II) form with a bridging hydride ligand. The Hox form is assigned as a valence-localized Fe(I)Fe(II) redox level with an open site at the distal iron. The Hox(air)(ox) form is assigned as an Fe(II)Fe(II) redox level with OH(-) or OOH(-) bound to the distal iron center that may or may not have an oxygen atom bound to one of the sulfur atoms of the dithiolate linker. Comparisons of the computed IR spectra of the (12)CO and (13)CO inhibited form with the experimental IR spectra show that exogenous CO binds terminally to the distal iron center.

摘要

铁铁氢化酶([FeFe]H2ases)是将质子还原为氢气的卓越天然催化剂。基于这些酶的未来生物技术应用需要对其结构和性质有精确的了解。尽管[FeFe]H2ases已通过单晶X射线晶体学和一系列光谱技术进行了表征,但关于光谱观测形式的分子结构细节仍存在模糊之处。我们使用密度泛函理论(DFT)对[FeFe]H2ase活性位点的小分子计算模型进行计算,以解决这个问题。具体而言,对一系列结构候选物进行几何优化,并使用计算得到的C - O和C - N伸缩频率及红外强度模拟它们的红外(IR)光谱。通过将这些光谱与每种形式的实验测定IR光谱进行比较来进行结构归属。Hred形式被归属为远端铁中心有开放位点的Fe(I)Fe(I)形式与远端氰化物已质子化的Fe(I)Fe(I)形式或具有桥连氢化物配体的Fe(II)Fe(II)形式的混合物。Hox形式被归属为远端铁有开放位点的价态局域化Fe(I)Fe(II)氧化还原水平。Hox(air)(ox)形式被归属为远端铁中心结合有OH(-)或OOH(-)的Fe(II)Fe(II)氧化还原水平,远端铁中心可能有也可能没有氧原子与二硫醇盐连接体的一个硫原子相连。将(12)CO和(13)CO抑制形式的计算IR光谱与实验IR光谱进行比较表明,外源CO以末端方式结合到远端铁中心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验