Esposito Gabriella, Vitagliano Luigi, Costanzo Paola, Borrelli Loredana, Barone Rita, Pavone Lorenzo, Izzo Paola, Zagari Adriana, Salvatore Francesco
Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via S. Pansini 5, I-80131 Napoli, Italy.
Biochem J. 2004 May 15;380(Pt 1):51-6. doi: 10.1042/BJ20031941.
We have identified a new mutation in the FBP (fructose 1,6-bisphosphate) aldolase A gene in a child with suspected haemolytic anaemia associated with myopathic symptoms at birth and with a subsequent diagnosis of arthrogryposis multiplex congenita and pituitary ectopia. Sequence analysis of the whole gene, also performed on the patient's full-length cDNA, revealed only a Gly346-->Ser substitution in the heterozygous state. We expressed in a bacterial system the new aldolase A Gly346-->Ser mutant, and the Glu206-->Lys mutant identified by others, in a patient with an aldolase A deficit. Analysis of their functional profiles showed that the Gly346Ser mutant had the same Km as the wild-type enzyme, but a 4-fold lower kcat. The Glu206-->Lys mutant had a Km approx. 2-fold higher than that of both the Gly346-->Ser mutant and the wild-type enzyme, and a kcat value 40% less than the wild-type. The Gly346-->Ser and wild-type enzymes had the same Tm (melting temperature), which was approx. 6-7 degrees C higher than that of the Glu206-->Lys enzyme. An extensive molecular graphic analysis of the mutated enzymes, using human and rabbit aldolase A crystallographic structures, suggests that the Glu206-->Lys mutation destabilizes the aldolase A tetramer at the subunit interface, and highlights the fact that the glycine-to-serine substitution at position 346 limits the flexibility of the C-terminal region. These results also provide the first evidence that Gly346 is crucial for the correct conformation and function of aldolase A, because it governs the entry/release of the substrates into/from the enzyme cleft, and/or allows important C-terminal residues to approach the active site.
我们在一名疑似患有溶血性贫血的儿童中发现了果糖1,6 - 二磷酸醛缩酶A(FBP aldolase A)基因的一个新突变。该儿童出生时伴有肌病症状,随后被诊断为先天性多发性关节挛缩症和垂体异位。对整个基因进行的序列分析,同样也在患者的全长cDNA上进行,结果显示仅存在杂合状态的Gly346→Ser替换。我们在细菌系统中表达了新的醛缩酶A Gly346→Ser突变体,以及由其他人在一名醛缩酶A缺乏症患者中鉴定出的Glu206→Lys突变体。对它们功能特性的分析表明,Gly346Ser突变体与野生型酶具有相同的Km,但kcat值低4倍。Glu206→Lys突变体的Km比Gly346→Ser突变体和野生型酶的Km大约高2倍,其kcat值比野生型少40%。Gly346→Ser和野生型酶具有相同的Tm(解链温度),比Glu206→Lys酶的Tm大约高6 - 7摄氏度。利用人和兔醛缩酶A的晶体结构对突变酶进行的广泛分子图形分析表明,Glu206→Lys突变使醛缩酶A四聚体在亚基界面处不稳定,并突出了346位甘氨酸到丝氨酸的替换限制了C末端区域灵活性的这一事实。这些结果还首次证明了Gly346对于醛缩酶A的正确构象和功能至关重要,因为它控制底物进入/离开酶裂隙的过程,和/或允许重要的C末端残基接近活性位点。