Suppr超能文献

鉴定精氨酸331是大肠杆菌II类果糖-1,6-二磷酸醛缩酶中的一个重要活性位点残基。

Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli.

作者信息

Qamar S, Marsh K, Berry A

机构信息

Department of Biochemistry, University of Cambridge, United Kingdom.

出版信息

Protein Sci. 1996 Jan;5(1):154-61. doi: 10.1002/pro.5560050119.

Abstract

Treatment of the Class II fructose-1,6-bisphosphate aldolase of Escherichia coli with the arginine-specific alpha-dicarbonyl reagents, butanedione or phenylglyoxal, results in inactivation of the enzyme. The enzyme is protected from inactivation by the substrate, fructose 1,6-bisphosphate, or by inorganic phosphate. Modification with [7-14C] phenylglyoxal in the absence of substrate demonstrates that enzyme activity is abolished by the incorporation of approximately 2 moles of reagent per mole of enzyme. Sequence alignment of the eight known Class II FBP-aldolases shows that only one arginine residue is conserved in all the known sequences. This residue, Arg-331, was mutated to either alanine or glutamic acid. The mutant enzymes were much less susceptible to inactivation by phenylglyoxal. Measurement of the steady-state kinetic parameters revealed that mutation of Arg-331 dramatically increased the K(m) for fructose 1,6-bisphosphate. Comparatively small differences in the inhibitor constant Ki for dihydroxyacetone phosphate or its analogue, 2-phosphoglycolate, were found between the wild-type and mutant enzymes. In contrast, the mutation caused large changes in the kinetic parameters when glyceraldehyde 3-phosphate was used as an inhibitor. Kinetic analysis of the oxidation of the carbanionic aldolase-substrate intermediate of the reaction by hexacyanoferrate (III) revealed that the K(m) for dihydroxyacetone phosphate was again unaffected, whereas that for fructose 1,6-bisphosphate was dramatically increased. Taken together, these results show that Arg-331 is critically involved in the binding of fructose bisphosphate by the enzyme and demonstrate that it interacts with the C-6 phosphate group of the substrate.

摘要

用精氨酸特异性的α-二羰基试剂丁二酮或苯乙二醛处理大肠杆菌的II类果糖-1,6-二磷酸醛缩酶,会导致该酶失活。底物果糖1,6-二磷酸或无机磷酸盐可保护该酶不被失活。在没有底物的情况下用[7-¹⁴C]苯乙二醛进行修饰表明,每摩尔酶掺入约2摩尔试剂会使酶活性丧失。对8种已知的II类FBP-醛缩酶进行序列比对表明,在所有已知序列中只有一个精氨酸残基是保守的。这个残基,即Arg-331,被突变为丙氨酸或谷氨酸。突变后的酶对苯乙二醛失活的敏感性大大降低。对稳态动力学参数的测量表明,Arg-331的突变显著增加了果糖1,6-二磷酸的K(m)值。在野生型和突变型酶之间,磷酸二羟丙酮或其类似物2-磷酸乙醇酸的抑制剂常数Ki的差异相对较小。相比之下,当以3-磷酸甘油醛作为抑制剂时,该突变导致动力学参数发生很大变化。用高铁氰化钾(III)对反应中碳负离子醛缩酶-底物中间体的氧化进行动力学分析表明,磷酸二羟丙酮的K(m)值再次不受影响,而果糖1,6-二磷酸的K(m)值则显著增加。综上所述,这些结果表明Arg-331在该酶结合果糖二磷酸的过程中起关键作用,并证明它与底物的C-6磷酸基团相互作用。

相似文献

3
Conserved residues in the mechanism of the E. coli Class II FBP-aldolase.
J Mol Biol. 1999 Jan 15;285(2):843-55. doi: 10.1006/jmbi.1998.2376.
4
Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
Eur J Biochem. 2000 Mar;267(6):1858-68. doi: 10.1046/j.1432-1327.2000.01191.x.
10
Role of arginine 439 in substrate binding of 5-aminolevulinate synthase.
Biochemistry. 1998 Feb 10;37(6):1478-84. doi: 10.1021/bi971928f.

引用本文的文献

1
Thermal Ring-Based Heat Switches in Hyperthermophilic Class II Bacterial Fructose Aldolase.
ACS Omega. 2023 Jun 27;8(27):24624-24634. doi: 10.1021/acsomega.3c03001. eCollection 2023 Jul 11.
2
Targeting Metalloenzymes for Therapeutic Intervention.
Chem Rev. 2019 Jan 23;119(2):1323-1455. doi: 10.1021/acs.chemrev.8b00201. Epub 2018 Sep 7.
3
Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases.
J Biol Chem. 2018 May 18;293(20):7737-7753. doi: 10.1074/jbc.RA117.001098. Epub 2018 Mar 28.
4
Aldolases Utilize Different Oligomeric States To Preserve Their Functional Dynamics.
Biochemistry. 2015 Jun 9;54(22):3543-54. doi: 10.1021/acs.biochem.5b00042. Epub 2015 May 27.
6
Structural basis for catalysis of a tetrameric class IIa fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis.
J Mol Biol. 2009 Mar 6;386(4):1038-53. doi: 10.1016/j.jmb.2009.01.003. Epub 2009 Jan 10.
7
Directed evolution of aldolases for exploitation in synthetic organic chemistry.
Arch Biochem Biophys. 2008 Jun 15;474(2):318-30. doi: 10.1016/j.abb.2008.01.005. Epub 2008 Jan 19.
8
Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution.
Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3143-8. doi: 10.1073/pnas.0635924100. Epub 2003 Mar 7.
10
Linkage map of Escherichia coli K-12, edition 10: the traditional map.
Microbiol Mol Biol Rev. 1998 Sep;62(3):814-984. doi: 10.1128/MMBR.62.3.814-984.1998.

本文引用的文献

1
EVOLUTION OF ALDOLASE.
Fed Proc. 1964 Nov-Dec;23:1248-57.
2
A data-based reaction mechanism for type I fructose bisphosphate aldolase.
Trends Biochem Sci. 1993 Feb;18(2):36-9. doi: 10.1016/0968-0004(93)90048-r.
6
A comprehensive set of sequence analysis programs for the VAX.
Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387-95. doi: 10.1093/nar/12.1part1.387.
9
Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution.
Proc Natl Acad Sci U S A. 1987 Nov;84(22):7846-50. doi: 10.1073/pnas.84.22.7846.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验