Fournier Diane, Halasz Annamaria, Spain Jim, Spanggord Ronald J, Bottaro Jeffrey C, Hawari Jalal
Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada.
Appl Environ Microbiol. 2004 Feb;70(2):1123-8. doi: 10.1128/AEM.70.2.1123-1128.2004.
Initial denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 produces CO2 and the dead-end product 4-nitro-2,4-diazabutanal (NDAB), OHCNHCH2NHNO2, in high yield. Here we describe experiments to determine the biodegradability of NDAB in liquid culture and soils containing Phanerochaete chrysosporium. A soil sample taken from an ammunition plant contained RDX (342 micromol kg(-1)), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 3,057 micromol kg(-1)), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine; 155 micromol kg(-1)), and traces of NDAB (3.8 micromol kg(-1)). The detection of the last in real soil provided the first experimental evidence for the occurrence of natural attenuation that involved ring cleavage of RDX. When we incubated the soil with strain DN22, both RDX and MNX (but not HMX) degraded and produced NDAB (388 +/- 22 micromol kg(-1)) in 5 days. Subsequent incubation of the soil with the fungus led to the removal of NDAB, with the liberation of nitrous oxide (N2O). In cultures with the fungus alone NDAB degraded to give a stoichiometric amount of N2O. To determine C stoichiometry, we first generated [14C]NDAB in situ by incubating [14C]RDX with strain DN22, followed by incubation with the fungus. The production of 14CO2 increased from 30 (DN22 only) to 76% (fungus). Experiments with pure enzymes revealed that manganese-dependent peroxidase rather than lignin peroxidase was responsible for NDAB degradation. The detection of NDAB in contaminated soil and its effective mineralization by the fungus P. chrysosporium may constitute the basis for the development of bioremediation technologies.
红球菌属菌株DN22对六氢-1,3,5-三硝基-1,3,5-三嗪(RDX)进行初始脱硝反应会产生二氧化碳以及终产物4-硝基-2,4-二氮杂丁醛(NDAB,OHCNHCH2NHNO2),且产量很高。在此,我们描述了一些实验,以确定NDAB在含有黄孢原毛平革菌的液体培养物和土壤中的生物降解性。从一个弹药厂采集的土壤样本中含有RDX(342微摩尔/千克)、HMX(八氢-1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷;3057微摩尔/千克)、MNX(六氢-1-亚硝基-3,5-二硝基-1,3,5-三嗪;155微摩尔/千克)以及痕量的NDAB(3.8微摩尔/千克)。在实际土壤中检测到NDAB为涉及RDX环裂解的自然衰减现象提供了首个实验证据。当我们用菌株DN22培养该土壤时,RDX和MNX(但不包括HMX)均发生降解,并在5天内产生了NDAB(388±22微摩尔/千克)。随后用这种真菌培养该土壤导致NDAB被去除,并释放出一氧化二氮(N2O)。在仅含有该真菌的培养物中,NDAB降解生成化学计量的N2O。为了确定碳化学计量,我们首先通过用[14C]RDX与菌株DN22培养,然后再与该真菌培养,原位生成[14C]NDAB。14CO2的生成量从仅使用DN22时的30%增加到了使用真菌时的76%。对纯酶的实验表明,锰依赖性过氧化物酶而非木质素过氧化物酶负责NDAB的降解。在受污染土壤中检测到NDAB以及黄孢原毛平革菌对其有效的矿化作用可能构成生物修复技术发展的基础。