Suppr超能文献

使用加权随机效应 Tobit 模型分析不可忽略的缺失和左截断的纵向数据。

Analysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model.

机构信息

Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Stat Med. 2011 Nov 30;30(27):3167-80. doi: 10.1002/sim.4344. Epub 2011 Sep 5.

Abstract

In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital prior to completion of the study or the death of the subject, resulting in non-ignorable missing data. In addition to non-ignorable missingness, there is left-censoring in the response measurements because of the inherent limit of detection. For analyzing non-ignorable missing and left-censored longitudinal data, we have proposed to extend the theory of random effects tobit regression model to weighted random effects tobit regression model. The weights are computed on the basis of inverse probability weighted augmented methodology. An extensive simulation study was performed to compare the performance of the proposed model with a number of competitive models. The simulation study shows that the estimates are consistent and that the root mean square errors of the estimates are minimal for the use of augmented inverse probability weights in the random effects tobit model. The proposed method is also applied to the non-ignorable missing and left-censored interleukin-6 biomarker data obtained from the Genetic and Inflammatory Markers of Sepsis study.

摘要

在一项具有住院期间收集应答数据的纵向研究中,由于研究完成前受试者出院或受试者死亡,观察可能会缺失,从而导致不可忽略的缺失数据。除了不可忽略的缺失之外,由于检测的固有限制,应答测量值也存在左截断。为了分析不可忽略的缺失和左截断的纵向数据,我们提出将随机效应 Tobit 回归模型的理论扩展到加权随机效应 Tobit 回归模型。权重是基于逆概率加权增广方法计算的。进行了广泛的模拟研究,以比较所提出模型与许多竞争模型的性能。模拟研究表明,对于随机效应 Tobit 模型中使用增广逆概率权重,估计值是一致的,并且估计值的均方根误差最小。该方法还应用于不可忽略的缺失和左截断白细胞介素-6 生物标志物数据,该数据是从脓毒症的遗传和炎症标志物研究中获得的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验