Poon A D, Johnson K B, Fagan L M
Section on Medical Informatics, Stanford University School of Medicine, CA 94305-5479.
Proc Annu Symp Comput Appl Med Care. 1992:762-6.
Numerous history-taking systems have been built to automate the medical history-taking process. These systems differ in their control methods, input and output modalities, and kinds of questions asked. Thus, there has emerged no standard way of representing interviewing knowledge--the expert knowledge used to govern the sequence of questions asked in an interview. This paper discusses how we use an augmented transition network (ATN) to represent the knowledge of a speech-driven automated history-taking program, Q-MED, and how, more generally, ATNs could be used as a representation for any knowledge-based history-taking system. We identify three characteristics of ATNs that facilitate the use of ATNs in interviewing systems: explicitness, hierarchical structure, and generality.
已经构建了许多病史采集系统来使病史采集过程自动化。这些系统在控制方法、输入和输出方式以及所提问题的类型上有所不同。因此,尚未出现表示访谈知识的标准方法——用于控制访谈中问题顺序的专家知识。本文讨论了我们如何使用增强转移网络(ATN)来表示语音驱动的自动病史采集程序Q-MED的知识,以及更一般地说,ATN如何可以用作任何基于知识的病史采集系统的表示。我们确定了ATN的三个有助于在访谈系统中使用ATN的特征:明确性、层次结构和通用性。