Suppr超能文献

A cholinergic input to the substantia nigra pars compacta increases striatal dopamine metabolism measured by in vivo voltammetry.

作者信息

Hernández-López S, Góngora-Alfaro J L, Martínez-Fong D, Aceves J

机构信息

Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional de México, DF.

出版信息

Brain Res. 1992 Dec 11;598(1-2):114-20. doi: 10.1016/0006-8993(92)90174-8.

Abstract

3,4-Dihydroxyphenylacetic acid (DOPAC) and ascorbic acid (AA) were measured by differential pulse voltammetry in the neostriatum of anesthetized rats. Physostigmine (2.3 nmol) applied into the substantia nigra pars compacta (SNc), increased DOPAC concentration in the ipsilateral neostriatum, but did not modify AA levels. The largest increase of striatal DOPAC (37 +/- 8% above basal) was observed when physostigmine was applied at less than 0.5 mm from SNc, and decreased with increasing distance of the injection site from the pars compacta region. Chemical stimulation of the pedunculopontine tegmental nucleus (PPN) with kainic acid (2.3 nmol) increased both DOPAC and AA concentration in the ipsilateral neostriatum. Pretreatment with the muscarinic antagonist scopolamine (5 mg/kg, i.p.) inhibited the increase of striatal DOPAC from 20 to 70 min after kainic acid injection into the PPN, whereas the increase of AA was reduced from 90 to 160 min. By contrast, the nicotinic antagonist mecamylamine (4 mg/kg, i.p.) did not inhibit neither DOPAC nor AA increase elicited by the chemical stimulation of PPN. These results support the existence of cholinergic neurotransmission within the SNc that increases the firing rate of nigrostriatal dopaminergic neurons, enhancing dopamine turnover in neostriatum without changes in AA release. They also suggest that the PPN could be the origin of cholinergic afferents to the SNc that modulate the activity of dopaminergic neurons, through activation of muscarinic cholinergic receptors. Finally, the activation of a multisynaptic loop involving a cholinergic pathway which modulates the activity of the glutamatergic corticostriatal neurons is postulated to explain the increase of AA in neostriatum observed after PPN stimulation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验