Leusser D, Henn J, Kocher N, Engels B, Stalke D
Institutes of Inorganic and Organic Chemistry, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
J Am Chem Soc. 2004 Feb 18;126(6):1781-93. doi: 10.1021/ja038941+.
To elucidate the bonding situation in the widely discussed hypervalent sulfur nitrogen species, the charge density distributions rho(r) and related properties of four representative compounds, methyl(diimido)sulfinic acid H(NtBu)(2)SMe (1), methylene-bis(triimido)sulfonic acid H(2)CS(NtBu)(2) (NHtBu) (2), sulfurdiimide S(NtBu)(2) (3), and sulfurtriimide S(NtBu)(3) (4), were determined experimentally by high-resolution low-temperature X-ray diffraction experiments (T = 100 K). This set of molecules represents an ideal frame of reference for the comparison of SN bonding modes, because they contain short formal S=N double bonds as well as long S-N single bonds, some of them influenced by inter- or intramolecular hydrogen bonds. For comparison, the gas-phase ab initio calculations of the four model compounds, H(NMe)(2)SMe, H(2)CS(NMe)(2)(NHMe), S(NMe)(2), and S(NMe)(3), were performed. The topological features were found to be not particularly sensitive with respect to different substituents R (R = H, Me, tBu). In this paper, it is documented that theory and experiment differ in the eigenvalues of the Hessian matrix because of systematically differing positions of the bond critical points but agree very well concerning the spatial Laplacian distribution and the distinct polarization of all investigated sulfur-nitrogen bonds. Both recommend the S(+)-N(-) formulation of sulfur nitrogen bonds in 1 and 2 since all nitrogen atoms are found to be sp(3) hybridized. The planar SNx (x = 2, 3) units in the diimide 3 and the triimide 4 reveal characteristics of m-center-n-electron systems. For none of the investigated S-N bonds, a classical double bond formulation can be supported. This is further substantiated by the NBO/NRT approach. Valence expansion to more than eight electrons at the sulfur atom can definitely be excluded to explain the bonding.
为阐明广泛讨论的高价硫氮物种中的键合情况,通过高分辨率低温X射线衍射实验(T = 100 K)对四种代表性化合物,即甲基(二亚氨基)亚磺酸H(NtBu)₂SMe(1)、亚甲基 - 双(三亚氨基)磺酸H₂C[S(NtBu)₂(NHtBu)]₂(2)、硫二亚胺S(NtBu)₂(3)和硫三亚胺S(NtBu)₃(4)的电荷密度分布ρ(r)及相关性质进行了实验测定。这组分子代表了用于比较SN键合模式的理想参考框架,因为它们包含短的形式上的S = N双键以及长的S - N单键,其中一些受到分子间或分子内氢键的影响。作为比较,对四种模型化合物H(NMe)₂SMe、H₂C[S(NMe)₂(NHMe)]₂、S(NMe)₂和S(NMe)₃进行了气相从头算计算。发现拓扑特征对不同取代基R(R = H、Me、tBu)不是特别敏感。本文记录了由于键临界点的系统位置不同,理论和实验在海森矩阵的本征值上存在差异,但在空间拉普拉斯分布以及所有研究的硫氮键的明显极化方面非常吻合。两者都推荐在1和2中采用硫氮键的S(+)-N(-)形式,因为发现所有氮原子都是sp³杂化的。二亚胺3和三亚胺4中的平面SNx(x = 2, 3)单元揭示了m中心 - n电子体系的特征。对于所研究的任何S - N键,都无法支持经典的双键形式。NBO/NRT方法进一步证实了这一点。为解释键合,肯定可以排除硫原子处价态扩展到超过八个电子的情况。