Schirmer U, Villwock J, Fösel T, Schreiber M, Goertz A, Georgieff M
Universitätsklinik für Anästhesiologie, Universität Ulm.
Anaesthesist. 1992 Dec;41(12):785-9.
In many anaesthesia ventilators in common use, the tidal volume delivered is different from the tidal volume preset on the respirator. Tidal volume delivered by mechanical ventilation during anaesthesia may be influenced by fresh gas flow (FGF), the respiratory rate (RR) or the inspiratory: expiratory ratio (I:E). This may cause inadequate hypo- or hyperventilation in small children, especially in newborns and neonates. Using small tidal volumes from 20 to 100 ml preset on the respirator, we investigated in a lung model the tidal volumes delivered by the anaesthesia ventilator CICERO (Dräger, FRG) with variations of FGF, RR and I:E. MATERIAL AND METHODS. The anaesthesia ventilator CICERO (software version 4.16) was equipped with the low-compliance tubes of the "Ulmer Kinder-Set" (Rüsch Co.) and the regular CO2 canister (1500 ml) of the machine. The circuit was connected to a lung model consisting of a glass clyinder filled with copper wool with a compliance of 3.3 ml/mbar. To create a pressure-volume correlation of the entire system, i.e. the lung model, the anaesthesia circuit and the ventilator, calibrated glass syringes were used and the pressure increase in the test lung was measured. This pressure-volume correlation was linear. The pressure increase in the lung model caused by the tidal volume during ventilation therefore reflected the actual tidal volume delivered. The study was performed with small tidal volumes from 20 to 100 ml that could be adjusted exactly on the ventilator. Delivered tidal volumes were studied by varying the FGF from 1 to 6 l/min and the RR from 20 to 60/min (with I:E = 1:1.5) and by varying the RR from 20 to 60/min and the I:E from 2:1 to 1:3 (with FGF = 21/min). RESULTS. By varying FGF, RR and I:E no changes in delivered tidal volumes were noted. In all settings of the ventilator studied, the delivered tidal volume was similar to the desired tidal volume preset on the ventilator. The highest deviation from the delivered tidal volume to the tidal volume preset was 17.5% with a tidal volume of 20 ml. In preset tidal volumes 30-100 ml this deviation was lower than 10%. An intermittent "auto-PEEP" up to 5 mbar was noted during high respiratory rates (50 and 60/min) combined with an I:E at 2:1 and 1:1 or with a FGF at 4 or 6 l/min. The compliance of the ventilator equipped with the circuit was 4.2 ml/mbar. CONCLUSION. The findings in this study prove that with tidal volumes ranging from 20 to 100 ml the actual tidal volume delivered by the anaesthesia ventilator CICERO is equivalent to the tidal volume set on the machine regardless of the variation of FGF, RR and I:E. These findings are mainly based on two circumstances. Firstly, fresh gas flow is fed into a reservoir and not added to the volume delivered by the bellow during inspiration as in many other respirators. Secondly, the CICERO works with a compliance correction function integrated into the machine. Computed compressible volume from the circuit and the ventilator is added to the tidal volume preset on the ventilator; therefore, the volume delivered by the bellow consists of the volume set on the ventilator plus the compressible volume. With these characteristics the anaesthesia ventilator CICERO meets important requirements for a ventilator in paediatric anaesthesia. However, for final assessment further clinical studies are required.
在许多常用的麻醉呼吸机中,输送的潮气量与呼吸机上预设的潮气量不同。麻醉期间机械通气输送的潮气量可能受新鲜气体流量(FGF)、呼吸频率(RR)或吸气:呼气比(I:E)影响。这可能导致小儿尤其是新生儿和早产儿通气不足或通气过度。我们在肺模型中使用呼吸机上预设的20至100 ml的小潮气量,研究了麻醉呼吸机西塞罗(德国德尔格公司)在FGF、RR和I:E变化时输送的潮气量。材料与方法。麻醉呼吸机西塞罗(软件版本4.16)配备了“乌尔姆儿童套装”(鲁施公司)的低顺应性管道和机器的常规二氧化碳罐(1500 ml)。回路连接到一个肺模型,该模型由一个装有铜丝的玻璃圆筒组成,顺应性为3.3 ml/mbar。为建立整个系统即肺模型、麻醉回路和呼吸机的压力-容积关系,使用校准的玻璃注射器并测量测试肺中的压力升高。这种压力-容积关系是线性的。因此,通气期间潮气量在肺模型中引起的压力升高反映了实际输送的潮气量。该研究使用呼吸机上可精确调节的20至100 ml的小潮气量进行。通过将FGF从1 l/min变化到6 l/min以及RR从20次/分钟变化到60次/分钟(I:E = 1:1.5),以及通过将RR从20次/分钟变化到60次/分钟和I:E从2:1变化到1:3(FGF = 2 l/min)来研究输送的潮气量。结果。通过改变FGF、RR和I:E,未观察到输送潮气量的变化。在所研究的呼吸机的所有设置中,输送的潮气量与呼吸机上预设的期望潮气量相似。输送潮气量与预设潮气量的最大偏差在潮气量为20 ml时为17.5%。在预设潮气量为30 - 100 ml时,该偏差低于10%。在高呼吸频率(50和60次/分钟)且I:E为2:1和1:1或FGF为4或6 l/min时,观察到高达5 mbar的间歇性“自动PEEP”。配备回路的呼吸机的顺应性为4.2 ml/mbar。结论。本研究结果证明,对于20至100 ml的潮气量,麻醉呼吸机西塞罗实际输送的潮气量与机器上设置的潮气量相当,而与FGF、RR和I:E的变化无关。这些结果主要基于两个情况。首先,新鲜气体流量被输送到一个储气罐中,而不像许多其他呼吸机那样在吸气时添加到风箱输送的容积中。其次,西塞罗通过集成在机器中的顺应性校正功能工作。计算出的回路和呼吸机的可压缩容积被添加到呼吸机上预设的潮气量中;因此,风箱输送的容积由呼吸机上设置的容积加上可压缩容积组成。凭借这些特性,麻醉呼吸机西塞罗满足了小儿麻醉中对呼吸机的重要要求。然而,为进行最终评估,还需要进一步的临床研究。