Schirmer U, Schreiber M, Goertz A, Schütz W, Rockemann M, Georgieff M
Universitätsklinik für Anästhesiologie, Universität Ulm.
Anaesthesist. 1994 Aug;43(8):521-7. doi: 10.1007/s001010050087.
In most ventilators used in anaesthesia tidal volume delivered during mechanical ventilation is different from the tidal volume preset at the respirator on the basis of respirator and circuit compliance and gas compression during inspiration. The error in ventilation due to the compressed volume is especially significant clinically when the tidal volume is very small or when the airway pressure is very high. In newborns and neonates in particular, decreasing lung compliance during a surgical procedure may contribute to marked hypoventilation. We therefore investigated ventilation in newborn piglets during decreasing lung compliance induced by tension pneumothorax. We used the anaesthesia ventilator CICERO (Dräger, Lübeck, Germany) and the SERVO 900 C ventilator (Siemens-Elema, Sweden). MATERIALS AND METHODS. Two anaesthesia ventilators, the CICERO (group I, n = 8) and the SERVO ventilators (group II, n = 8) were investigated following randomized selection in a group of 16 newborn piglets (Table 1). After normoventilation for 60 min a tension pneumothorax at +10 mbar was induced. After 15 min the pneumothorax was increased to +20 mbar and maintained at this level for the rest of the study. When hypercapnia (PaCO2 > 45 mmHg) resulted, the respiratory rate was increased by +10/min after 15 min with pneumothorax at +20 mbar. When hypercapnia continued, the respiratory rate was increased again 25 min and if necessary also 35 min after the induction of pneumothorax at +20 mbar. After normoventilation for 60 min (T1) (Table 2), after 15 min with pneumothorax at +10 mbar (T2) and after 15 min (T3), 25 min (T4), 35 min (T5) and 45 min (T6) with pneumothorax at +20 mbar the following parameters were obtained: central venous (CVP) and mean arterial pressure (MAP), heart rate (HR), arterial (PaCO2) and end-tidal CO2 tension (PetCO2), peak inspiratory pressure (PIP), respiratory frequency (RF) and expiratory tidal (Vtex) and minute volume (VE). RESULTS. In group I the pneumothorax resulted in a significantly smaller increase in PaCO2 (43.3 +/- 6.2 mmHg) than in group II (Fig. 1), and hypercapnia was present in only 3 piglets. Vtex (Fig. 2), VE (Fig. 3) and PIP (Fig. 5) increased significantly, with significantly higher values than in group II, while PetCO2 (Fig. 6) decreased significantly. In group II the pneumothorax was attributed to a significant increase in PaCO2 and a marked hypercapnia in all piglets (PaCO2 61.2 +/- 5.9 mmHg) (Fig. 1). Vtex (Fig. 2) and VE (Fig. 3) remained unchanged, while PIP (Fig. 5) and PetCO2 (Fig. 6) increased. Following the increase in RF (Fig. 4) in all piglets, Vtex and VE increased and PaCO2 and PetCO2 decreased. CONCLUSIONS. During ventilation of neonates with the SERVO ventilator a decrease in lung compliance will cause hypoventilation and hypercapnia. This reflected by an increase in peak inspiratory pressure and can be corrected by increasing the respiratory rate. In contrast, the CICERO is able to preserve ventilation by an internal correction for gas compression, but it does not guarantee normoventilation in all cases. In neither group does the end-tidal PCO2 reflect the true ventilation during decreasing lung compliance, so that arterial blood gas analysis seems to be mandatory for the diagnosis of hypercapnia in such situations.
在大多数用于麻醉的呼吸机中,机械通气时输送的潮气量与呼吸机上预设的潮气量不同,这是基于呼吸机和回路的顺应性以及吸气过程中的气体压缩。当潮气量非常小或气道压力非常高时,由于压缩容积导致的通气误差在临床上尤为显著。特别是在新生儿和早产儿中,手术过程中肺顺应性降低可能导致明显的通气不足。因此,我们研究了张力性气胸诱导肺顺应性降低期间新生仔猪的通气情况。我们使用了麻醉呼吸机CICERO(德国吕贝克德尔格公司)和SERVO 900 C呼吸机(瑞典西门子-伊莱玛公司)。材料与方法。在一组16只新生仔猪中随机选择两台麻醉呼吸机,即CICERO(I组,n = 8)和SERVO呼吸机(II组,n = 8)(表1)。在正常通气60分钟后,诱导产生+10 mbar的张力性气胸。15分钟后,将气胸压力增加到+20 mbar,并在研究的其余时间维持在该水平。当出现高碳酸血症(PaCO2 > 45 mmHg)时,在气胸压力为+20 mbar 15分钟后,呼吸频率增加10次/分钟。如果高碳酸血症持续存在,在气胸压力为+20 mbar诱导后25分钟以及必要时35分钟再次增加呼吸频率。在正常通气60分钟后(T1)(表2)、气胸压力为+10 mbar 15分钟后(T2)以及气胸压力为+20 mbar 15分钟(T3)、25分钟(T4)、35分钟(T5)和45分钟(T6)后,获得以下参数:中心静脉压(CVP)和平均动脉压(MAP)、心率(HR)、动脉血二氧化碳分压(PaCO2)和呼气末二氧化碳分压(PetCO2)、吸气峰压(PIP)、呼吸频率(RF)、呼气潮气量(Vtex)和分钟通气量(VE)。结果。在I组中,气胸导致PaCO2的升高(43.3 +/- 6.2 mmHg)明显小于II组(图1),并且只有3只仔猪出现高碳酸血症。Vtex(图2)、VE(图3)和PIP(图5)显著增加,且值明显高于II组,而PetCO2(图6)显著降低。在II组中,气胸导致所有仔猪的PaCO2显著升高和明显的高碳酸血症(PaCO2 61.2 +/- 5.9 mmHg)(图1)。Vtex(图2)和VE(图3)保持不变,而PIP(图5)和PetCO2(图6)升高。在所有仔猪的RF增加后(图4),Vtex和VE增加,PaCO2和PetCO2降低。结论。在使用SERVO呼吸机对新生儿进行通气时,肺顺应性降低会导致通气不足和高碳酸血症。这表现为吸气峰压升高,可通过增加呼吸频率来纠正。相比之下,CICERO能够通过对气体压缩的内部校正来维持通气,但不能保证在所有情况下都能实现正常通气。在两组中,呼气末PCO2均不能反映肺顺应性降低期间的真实通气情况,因此在这种情况下,动脉血气分析似乎是诊断高碳酸血症的必要手段。