Suppr超能文献

[在麻醉环路系统中使用最低潮气量进行机械通气——在肺模型和动物实验中对3种麻醉呼吸机的研究]

[Mechanical ventilation in an anesthetic circle system using the lowest tidal volume--studies of 3 anesthesia ventilators in a lung model and an animal experiment].

作者信息

Fösel T, Schirmer U, Wick C, Pfenninger E, Siegler W, Altemeyer K H

机构信息

Universitätsklinik für Anaesthesiologie, Universitätsklinikum Ulm.

出版信息

Anaesthesist. 1991 Nov;40(11):624-8.

PMID:1755533
Abstract

No anesthesia ventilator attached to a circle system is manufactured for use in neonates. However, a small bellows can be supplied for the following anesthesia ventilators: Spiromat NS 656 (NS), Ventilog 2 (V2) and AV1 (Draeger Co.) We investigated the minimal tidal volume delivered by each of the three ventilators. In addition, we tested the performance of the AV1 in neonatal piglets for manual and controlled ventilation, and in decreased lung compliance. MATERIALS AND METHODS. All circuits were equipped with one CO2 canister (750 ml) and the low-compliance tubes of the "Ulmer Kinder Set" (Ruesch Co.) The circuits were connected to a lung model consisting of a glass cylinder filled with copper wool with a compliance of 3.0 ml/mbar. By using calibrated glass syringes we created a pressure-volume correlation for the entire system, i.e., the lung model, the anesthesia circuit and the ventilator, which was linear for each of the three ventilators. The pressure was measured in the test lung. The pressure increase caused by the tidal volume therefore reflected the actual tidal volume delivered, which was calculated using the pressure-volume correlation. Tidal volumes were determined for varying the fresh gas flow (FGF), the respiratory rate (RR), which was varied between 20 and 60/min and the I:E ratio (IE), which was varied between 1:1 and 1:2. Six newborn piglets aged 2-12 h and with body weight 1000-1300 g were anesthetized, tracheotomized and ventilated with an oxygen-nitrous oxide mixture (FIO2 0.25). The manual ventilation lasted 30 min (period 1) and was followed by mechanical ventilation for 60 min (period 2). Thereafter, a left pneumothorax with constant pressure of 20 mbar and then 40 mbar for 15 min each was created (period 3). A fall in blood pressure was treated with 10 ml colloids in five of the six animals. During the experiment arterial blood pressure in the carotid artery, mean airway pressure at the distal end of the tracheal tube and end-tidal CO2 were continuously recorded. Arterial blood gases were analyzed at the end of each period. RESULTS. The tidal volumes delivered with an identical position of the bellows varied in ventilators NS and V2 with changes in FGF, RR and IE. Decrease in FGF, higher RR and longer expiration resulted in a decrease in the tidal volume. The "smallest" tidal volume delivered by NS varied from 50 ml (FGF 2 l/min, RR 60, IE 1:2) to 188 ml (FGF 4 l/min, RR 20, IE 1:1) and from 11 ml (FGF 2 l/min, RR 60, IE 1:2) to 110 (FGF 4 l/min, RR 20, IE 1:1) in the V2. The AV1 showed a minimal tidal volume of about 5 ml, and no changes in tidal volume attributable to alterations in FGF, RR or IE could be observed. No problems occurred during manual or mechanical ventilation in the piglets. With the experimental decrease in lung compliance no increase in airway pressure was noted, but an increase in arterial pCO2 by 8 mmHg (mean) reflects hypoventilation that was not corrected by the ventilator. DISCUSSION. We believe that the changes in tidal volume in ventilators NS and V2 are caused by adding FGF to the volume delivered by the below during inspiration. Because of the unpredictability of the tidal volumes, these ventilators are not suitable for the use in neonates. The AV1 has a very low systemic compliance which makes it suitable for use in neonatal anesthesia. However, a decrease in lung compliance is not compensated by an increase in airway pressure and leads to hypoventilation. When small tidal volumes are used in patients with low lung compliance, it does not act as expected of a volume-cycled ventilator.

摘要

没有为连接到循环系统的麻醉呼吸机制造用于新生儿的产品。然而,可以为以下麻醉呼吸机提供一个小波纹管:Spiromat NS 656(NS)、Ventilog 2(V2)和AV1(德尔格公司)。我们研究了这三种呼吸机各自输送的最小潮气量。此外,我们在新生仔猪中测试了AV1在手动通气和控制通气以及肺顺应性降低时的性能。材料与方法。所有回路都配备了一个二氧化碳罐(750毫升)和“乌尔默儿童套装”(吕施公司)的低顺应性管道。回路连接到一个肺模型,该模型由一个装有铜丝的玻璃圆柱体组成,顺应性为3.0毫升/毫巴。通过使用校准的玻璃注射器,我们为整个系统,即肺模型、麻醉回路和呼吸机建立了压力-容积相关性,这对三种呼吸机中的每一种都是线性的。在测试肺中测量压力。因此,潮气量引起的压力增加反映了实际输送的潮气量,该潮气量使用压力-容积相关性进行计算。针对不同的新鲜气体流量(FGF)、呼吸频率(RR,在20至60次/分钟之间变化)和吸呼比(I:E,在1:1至1:2之间变化)确定潮气量。六只年龄为2至12小时、体重为1000至1300克的新生仔猪被麻醉、气管切开并用氧气-氧化亚氮混合物(FIO2 0.25)通气。手动通气持续30分钟(第1阶段),随后机械通气60分钟(第2阶段)。此后,分别以20毫巴和40毫巴的恒定压力制造左气胸,各持续15分钟(第3阶段)。六只动物中的五只动物血压下降时用10毫升胶体进行治疗。在实验过程中,持续记录颈动脉中的动脉血压、气管导管末端的平均气道压力和呼气末二氧化碳。在每个阶段结束时分析动脉血气。结果。在波纹管位置相同的情况下,NS和V2呼吸机输送的潮气量随FGF、RR和I:E的变化而变化。FGF降低、RR升高和呼气时间延长导致潮气量减少。NS输送的“最小”潮气量从50毫升(FGF为2升/分钟、RR为60、I:E为1:2)到188毫升(FGF为4升/分钟、RR为20、I:E为1:1),V2则从11毫升(FGF为2升/分钟、RR为60、I:E为1:2)到110毫升(FGF为4升/分钟、RR为20、I:E为1:1)。AV1的最小潮气量约为5毫升,未观察到潮气量因FGF、RR或I:E的改变而发生变化。仔猪在手动或机械通气过程中未出现问题。随着实验性肺顺应性降低,未观察到气道压力升高,但动脉pCO2平均升高8毫米汞柱反映了通气不足,呼吸机未对此进行纠正。讨论。我们认为,NS和V2呼吸机中潮气量的变化是由于在吸气过程中向下方输送的容积中添加了FGF。由于潮气量的不可预测性,这些呼吸机不适合用于新生儿。AV1具有非常低的系统顺应性,这使其适合用于新生儿麻醉。然而,肺顺应性降低并未通过气道压力升高得到补偿,导致通气不足。当在肺顺应性低的患者中使用小潮气量时,它并未像容积控制呼吸机预期的那样发挥作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验