Suppr超能文献

使用随机森林技术预测细胞内寄生虫表位特征的计算建模与分析

Computational Modeling and Analysis to Predict Intracellular Parasite Epitope Characteristics Using Random Forest Technique.

作者信息

Javadi Amir, Khamesipour Ali, Monajemi Farshid, Ghazisaeedi Marjan

机构信息

Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.

Department of Medical Social Sciences, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.

出版信息

Iran J Public Health. 2020 Jan;49(1):125-133.

Abstract

BACKGROUND

In a new approach, computational methods are used to design and evaluate the vaccine. The aim of the current study was to develop a computational tool to predict epitope candidate vaccines to be tested in experimental models.

METHODS

This study was conducted in the School of Allied Medical Sciences, and Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran in 2018. The random forest which is a classifier method was used to design computer-based tool to predict immunogenic peptides. Data was used to check the collected information from the IEDB, UniProt, and AAindex database. Overall, 1,264 collected data were used and divided into three parts; 70% of the data was used to train, 15% to validate and 15% to test the model. Five-fold cross-validation was used to find optimal hyper parameters of the model. Common performance metrics were used to evaluate the developed model.

RESULTS

Twenty seven features were identified as more important using RF predictor model and were used to predict the class of peptides. The RF model improves the performance of predictor model in comparison with the other predictor models (AUC±SE: 0.925±0.029). Using the developed RF model helps to identify the most likely epitopes for further experimental studies.

CONCLUSION

The current developed random forest model is able to more accurately predict the immunogenic peptides of intracellular parasites.

摘要

背景

在一种新方法中,计算方法被用于设计和评估疫苗。本研究的目的是开发一种计算工具,以预测将在实验模型中进行测试的表位候选疫苗。

方法

本研究于2018年在伊朗德黑兰医科大学联合医学科学学院以及皮肤病和麻风病研究与培训中心进行。随机森林作为一种分类方法,被用于设计基于计算机的工具来预测免疫原性肽段。数据用于检查从IEDB、UniProt和AAindex数据库收集的信息。总体而言,共使用了1264条收集到的数据,并将其分为三部分;70%的数据用于训练,15%用于验证,15%用于测试模型。采用五折交叉验证来寻找模型的最佳超参数。使用常见的性能指标来评估所开发的模型。

结果

使用随机森林预测模型确定了27个更为重要的特征,并用于预测肽段的类别。与其他预测模型相比,随机森林模型提高了预测模型的性能(AUC±SE:0.925±0.029)。使用所开发的随机森林模型有助于识别最有可能的表位,以进行进一步的实验研究。

结论

当前开发的随机森林模型能够更准确地预测细胞内寄生虫的免疫原性肽段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f91c/7152625/de6262784bac/IJPH-49-125-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验