Suppr超能文献

支持向量机在生物信息学中的应用。

Support vector machine applications in bioinformatics.

作者信息

Byvatov Evgeny, Schneider Gisbert

机构信息

Johann Wolfgang Goethe-Universität, Institut für Organische Chemie und Chemische Biologie, Frankfurt, Germany.

出版信息

Appl Bioinformatics. 2003;2(2):67-77.

Abstract

The support vector machine (SVM) approach represents a data-driven method for solving classification tasks. It has been shown to produce lower prediction error compared to classifiers based on other methods like artificial neural networks, especially when large numbers of features are considered for sample description. In this review, the theory and main principles of the SVM approach are outlined, and successful applications in traditional areas of bioinformatics research are described. Current developments in techniques related to the SVM approach are reviewed which might become relevant for future functional genomics and chemogenomics projects. In a comparative study, we developed neural network and SVM models to identify small organic molecules that potentially modulate the function of G-protein coupled receptors. The SVM system was able to correctly classify approximately 90% of the compounds in a cross-validation study yielding a Matthews correlation coefficient of 0.78. This classifier can be used for fast filtering of compound libraries in virtual screening applications.

摘要

支持向量机(SVM)方法是一种用于解决分类任务的数据驱动方法。与基于人工神经网络等其他方法的分类器相比,它已被证明能产生更低的预测误差,尤其是在考虑大量特征用于样本描述时。在本综述中,概述了SVM方法的理论和主要原理,并描述了其在生物信息学研究传统领域的成功应用。还综述了与SVM方法相关技术的当前发展,这些发展可能与未来的功能基因组学和化学基因组学项目相关。在一项比较研究中,我们开发了神经网络和SVM模型来识别可能调节G蛋白偶联受体功能的小分子有机化合物。在交叉验证研究中,SVM系统能够正确分类约90%的化合物,马修斯相关系数为0.78。该分类器可用于虚拟筛选应用中化合物库的快速筛选。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验