Suppr超能文献

用于脑PET/SPECT研究分析并带有部分容积效应校正的集成软件。

Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction.

作者信息

Quarantelli Mario, Berkouk Karim, Prinster Anna, Landeau Brigitte, Svarer Claus, Balkay Laszlo, Alfano Bruno, Brunetti Arturo, Baron Jean-Claude, Salvatore Marco

机构信息

Biostructure and Bioimaging Institute, National Council for Research, Building 10, Via Pansini 5, 80131 Naples, Italy.

出版信息

J Nucl Med. 2004 Feb;45(2):192-201.

Abstract

UNLABELLED

We present software for integrated analysis of brain PET studies and coregistered segmented MRI that couples a module for automated placement of regions of interest (ROI) with 4 alternative methods for partial-volume-effect correction (PVEc). The accuracy and precision of these methods have been measured using 4 simulated (18)F-FDG PET studies with increasing degrees of atrophy.

METHODS

The software allows the application of a set of labels, defined a priori in the Talairach space, to segmented and coregistered MRI. Resulting ROIs are then transferred onto the PET study, and corresponding values are corrected according to the 4 PVEc techniques under investigation, providing corresponding corrected values. To evaluate the PVEc techniques, the software was applied to 4 simulated (18)F-FDG PET studies, introducing increasingly larger experimental errors, including errors in coregistration (0- to 6-pixel misregistration), segmentation (-13.7% to 14.1% gray matter [GM] volume change) and resolution estimate errors (-16.9% to 26.8% full-width-at-half-maximum mismatch).

RESULTS

Even in the absence of segmentation and coregistration errors, uncorrected PET values showed -37.6% GM underestimation and 91.7% WM overestimation. Voxel-based correction only for the loss of GM activity as a result of spill-out onto extraparenchymal tissues left a residual underestimation of GM values (-21.2%). Application of the method that took into account both spill-in and spill-out effects between any possible pair of ROIs (R-PVEc) and of the voxel-based method that corrects also for the WM activity derived from R-PVEC (mMG-PVEc) provided an accuracy above 96%. The coefficient of variation of the GM ROIs, a measure of the imprecision of the GM concentration estimates, was 8.5% for uncorrected PET data and decreased with PVEc, reaching 6.0% for mMG-PVEc. Coregistration errors appeared to be the major determinant of the imprecision.

CONCLUSION

Coupling of automated ROI placement and PVEc provides a tool for integrated analysis of brain PET/MRI data, which allows a recovery of true GM ROI values, with a high degree of accuracy when R-PVEc or mMG-PVEc is used. Among the 4 tested PVEc methods, R-PVEc showed the greatest accuracy and is suitable when corrected images are not specifically needed. Otherwise, if corrected images are desired, the mMG-PVEc method appears the most adequate, showing a similar accuracy.

摘要

未标注

我们展示了用于脑PET研究和配准分割MRI综合分析的软件,该软件将感兴趣区域(ROI)自动放置模块与4种部分容积效应校正(PVEc)的替代方法相结合。这些方法的准确性和精密度已通过4项模拟的(18)F-FDG PET研究进行测量,这些研究的萎缩程度逐渐增加。

方法

该软件允许将在Talairach空间中预先定义的一组标签应用于分割并配准的MRI。然后将得到的ROI转移到PET研究中,并根据所研究的4种PVEc技术对相应的值进行校正,从而提供相应的校正值。为了评估PVEc技术,该软件被应用于4项模拟的(18)F-FDG PET研究,引入了越来越大的实验误差,包括配准误差(0至6像素的配准错误)、分割误差(灰质[GM]体积变化为-13.7%至14.1%)和分辨率估计误差(半高宽不匹配为-16.9%至26.8%)。

结果

即使在没有分割和配准误差的情况下,未校正的PET值也显示出GM低估37.6%和WM高估91.7%。仅针对由于溢出到脑实质外组织而导致的GM活性损失进行基于体素的校正,仍使GM值存在残余低估(-

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验