Suppr超能文献

一个内含子增强子通过两种不同的剪接体调控黑腹果蝇prospero前体mRNA双内含子的剪接。

An intronic enhancer regulates splicing of the twintron of Drosophila melanogaster prospero pre-mRNA by two different spliceosomes.

作者信息

Scamborova Petra, Wong Anthony, Steitz Joan A

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University Howard Hughes Medical Institute, New Haven, Connecticut 06536-9812, USA.

出版信息

Mol Cell Biol. 2004 Mar;24(5):1855-69. doi: 10.1128/MCB.24.5.1855-1869.2004.

Abstract

We have examined the alternative splicing of the Drosophila melanogaster prospero twintron, which contains splice sites for both the U2- and U12-type spliceosome and generates two forms of mRNA, pros-L (U2-type product) and pros-S (U12-type product). We find that twintron splicing is developmentally regulated: pros-L is abundant in early embryogenesis while pros-S displays the opposite pattern. We have established a Kc cell in vitro splicing system that accurately splices a minimal pros substrate containing the twintron and have examined the sequence requirements for pros twintron splicing. Systematic deletion and mutation analysis of intron sequences established that twintron splicing requires a 46-nucleotide purine-rich element located 32 nucleotides downstream of the U2-type 5' splice site. While this element regulates both splicing pathways, its alteration showed the severest effects on the U2-type splicing pathway. Addition of an RNA competitor containing the wild-type purine-rich element to the Kc extract abolished U2-type splicing and slightly repressed U12-type splicing, suggesting that a trans-acting factor(s) binds the enhancer element to stimulate twintron splicing. Thus, we have identified an intron region critical for prospero twintron splicing as a first step towards elucidating the molecular mechanism of splicing regulation involving competition between the two kinds of spliceosomes.

摘要

我们研究了黑腹果蝇prospero双内含子的可变剪接,该双内含子包含U2型和U12型剪接体的剪接位点,并产生两种形式的mRNA,即pros-L(U2型产物)和pros-S(U12型产物)。我们发现双内含子剪接受发育调控:pros-L在胚胎发育早期大量存在,而pros-S则呈现相反的模式。我们建立了一个能准确剪接包含双内含子的最小pros底物的Kc细胞体外剪接系统,并研究了pros双内含子剪接的序列要求。对内含子序列进行系统的缺失和突变分析表明,双内含子剪接需要一个位于U2型5'剪接位点下游32个核苷酸处的46个核苷酸的富含嘌呤元件。虽然该元件调控两种剪接途径,但其改变对U2型剪接途径的影响最为严重。向Kc提取物中添加含有野生型富含嘌呤元件的RNA竞争物可消除U2型剪接,并轻微抑制U12型剪接,这表明一种反式作用因子与增强子元件结合以刺激双内含子剪接。因此,我们已经鉴定出prospero双内含子剪接的关键内含子区域,这是阐明涉及两种剪接体之间竞争的剪接调控分子机制的第一步。

相似文献

2
Drosophila hnRNP A1 homologs Hrp36/Hrp38 enhance U2-type versus U12-type splicing to regulate alternative splicing of the prospero twintron.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2577-82. doi: 10.1073/pnas.0812826106. Epub 2009 Feb 5.
4
RS domain-splicing signal interactions in splicing of U12-type and U2-type introns.
Nat Struct Mol Biol. 2007 Jul;14(7):597-603. doi: 10.1038/nsmb1263. Epub 2007 Jul 1.
5
Alternative splicing and bioinformatic analysis of human U12-type introns.
Nucleic Acids Res. 2007;35(6):1833-41. doi: 10.1093/nar/gkm026. Epub 2007 Mar 1.
6
Splicing of a rare class of introns by the U12-dependent spliceosome.
Biol Chem. 2005 Aug;386(8):713-24. doi: 10.1515/BC.2005.084.
9
Branchpoint selection in the splicing of U12-dependent introns in vitro.
RNA. 2002 May;8(5):579-86. doi: 10.1017/s1355838202028029.

引用本文的文献

1
Aberrant RNA splicing and therapeutic opportunities in cancers.
Cancer Sci. 2022 Feb;113(2):373-381. doi: 10.1111/cas.15213. Epub 2021 Nov 30.
2
At the Intersection of Major and Minor Spliceosomes: Crosstalk Mechanisms and Their Impact on Gene Expression.
Front Genet. 2021 Jul 20;12:700744. doi: 10.3389/fgene.2021.700744. eCollection 2021.
3
Minor Intron Splicing from Basic Science to Disease.
Int J Mol Sci. 2021 Jun 4;22(11):6062. doi: 10.3390/ijms22116062.
4
Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease.
Trends Mol Med. 2021 Jul;27(7):643-659. doi: 10.1016/j.molmed.2021.04.005. Epub 2021 May 13.
5
The carboxyl termini of RAN translated GGGGCC nucleotide repeat expansions modulate toxicity in models of ALS/FTD.
Acta Neuropathol Commun. 2020 Aug 4;8(1):122. doi: 10.1186/s40478-020-01002-8.
7
An Integrated Model of Minor Intron Emergence and Conservation.
Front Genet. 2019 Nov 13;10:1113. doi: 10.3389/fgene.2019.01113. eCollection 2019.
9
New insights into minor splicing-a transcriptomic analysis of cells derived from TALS patients.
RNA. 2019 Sep;25(9):1130-1149. doi: 10.1261/rna.071423.119. Epub 2019 Jun 7.
10
Competing RNA pairings in complex alternative splicing of a 3' variable region.
RNA. 2018 Nov;24(11):1466-1480. doi: 10.1261/rna.066225.118. Epub 2018 Jul 31.

本文引用的文献

1
Novel functional role of CA repeats and hnRNP L in RNA stability.
RNA. 2003 Aug;9(8):931-6. doi: 10.1261/rna.5660803.
2
Roles of hnRNP A1, SR proteins, and p68 helicase in c-H-ras alternative splicing regulation.
Mol Cell Biol. 2003 Apr;23(8):2927-41. doi: 10.1128/MCB.23.8.2927-2941.2003.
3
Structure of the DNA binding region of prospero reveals a novel homeo-prospero domain.
Structure. 2002 Nov;10(11):1541-9. doi: 10.1016/s0969-2126(02)00883-3.
4
The splicing of U12-type introns can be a rate-limiting step in gene expression.
EMBO J. 2002 Jul 15;21(14):3804-15. doi: 10.1093/emboj/cdf297.
7
Initial sequencing and analysis of the human genome.
Nature. 2001 Feb 15;409(6822):860-921. doi: 10.1038/35057062.
8
Alternative splicing: increasing diversity in the proteomic world.
Trends Genet. 2001 Feb;17(2):100-7. doi: 10.1016/s0168-9525(00)02176-4.
10
Characterization of the mouse Prox1 gene.
Biochem Biophys Res Commun. 1998 Jul 30;248(3):684-9. doi: 10.1006/bbrc.1998.8989.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验