Chen Zhen, Dunson David B
Department of Biostatistics and Epidemiology, University of Pennsylvania, 625 Blockley Hall, 423 Guardian Dr. Philadelphia, Pennsylvania, USA.
Biometrics. 2003 Dec;59(4):762-9. doi: 10.1111/j.0006-341x.2003.00089.x.
We address the important practical problem of how to select the random effects component in a linear mixed model. A hierarchical Bayesian model is used to identify any random effect with zero variance. The proposed approach reparameterizes the mixed model so that functions of the covariance parameters of the random effects distribution are incorporated as regression coefficients on standard normal latent variables. We allow random effects to effectively drop out of the model by choosing mixture priors with point mass at zero for the random effects variances. Due to the reparameterization, the model enjoys a conditionally linear structure that facilitates the use of normal conjugate priors. We demonstrate that posterior computation can proceed via a simple and efficient Markov chain Monte Carlo algorithm. The methods are illustrated using simulated data and real data from a study relating prenatal exposure to polychlorinated biphenyls and psychomotor development of children.
我们解决了线性混合模型中如何选择随机效应分量这一重要的实际问题。采用分层贝叶斯模型来识别方差为零的任何随机效应。所提出的方法对混合模型进行重新参数化,以便将随机效应分布的协方差参数的函数作为标准正态潜在变量上的回归系数纳入。我们通过为随机效应方差选择在零处具有点质量的混合先验,使随机效应有效地从模型中剔除。由于重新参数化,该模型具有条件线性结构,便于使用正态共轭先验。我们证明后验计算可以通过一种简单有效的马尔可夫链蒙特卡罗算法进行。使用来自一项关于产前接触多氯联苯与儿童精神运动发育关系研究的模拟数据和实际数据对这些方法进行了说明。