Carini Rita, Castino Roberta, De Cesaris Maria Grazia, Splendore Roberta, Démoz Marina, Albano Emanuele, Isidoro Ciro
Laboratory of Pathology, Dipartimento di Scienze Mediche, Università del Piemonte Orientale A. Avogadro, via Solaroli 17, 28100 Novara, Italy.
J Cell Sci. 2004 Mar 1;117(Pt 7):1065-77. doi: 10.1242/jcs.00923. Epub 2004 Feb 17.
A short period of hypoxia reduces the cytotoxicity produced by a subsequent prolonged hypoxia in isolated hepatocytes. This phenomenon, termed hypoxic preconditioning, is mediated by the activation of adenosine A2A-receptor and is associated with the attenuation of cellular acidosis and Na+ overload normally occurring during hypoxia. Bafilomycin, an inhibitor of the vacuolar H+/ATPase, reverts the latter effects and abrogates the preconditioning-induced cytoprotection. Here we provide evidence that the acquisition of preconditioning-induced cytoprotection requires the fusion with plasma membrane and exocytosis of endosomal-lysosomal organelles. Poisons of the vesicular traffic, such as wortmannin and 3-methyladenine, which inhibit phosphatydilinositol 3-kinase, or cytochalasin D, which disassembles the actin cytoskeleton, prevented lysosome exocytosis and also abolished the preconditioning-associated protection from acidosis and necrosis provoked by hypoxia. Preconditioning was associated with the phosphatydilinositol 3-kinase-dependent increase of cytosolic [Ca2+]. Chelation of free cytosolic Ca2+ in preconditioned cells prevented lysosome exocytosis and the acquisition of cytoprotection. We conclude that lysosome-plasma membrane fusion is the mechanism through which hypoxic preconditioning allows hepatocytes to preserve the intracellular pH and survive hypoxic stress. This process is under the control of phosphatydilinositol 3-kinase and requires the integrity of the cytoskeleton and the rise of intracellular free calcium ions.